We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Translocation Marker Linked to Drug Resistance and Poor Prognosis

By LabMedica International staff writers
Posted on 29 Apr 2019
Image: A histopathological image of multiple myeloma from a bone marrow aspirate (Photo courtesy of Wikimedia Commons).
Image: A histopathological image of multiple myeloma from a bone marrow aspirate (Photo courtesy of Wikimedia Commons).
Cancer researchers have identified a genetic marker linked to the likelihood of a bad prognosis for some patients suffering from multiple myeloma.

Multiple myeloma is a malignancy of antibody-secreting plasma cells. Most patients benefit from current therapies, however, 20% of patients relapse or die within two years and are deemed high risk.

To better understand the mechanisms that promote development of resistance to immunomodulatory drugs such as lenalidomide, investigators at Emory University School of Medicine (Atlanta, GA, USA) analyzed structural variants from 795 newly-diagnosed myeloma patients participating in the CoMMPass (Clinical Outcomes in Multiple Myeloma to Personal Assessment) study.

Results revealed that translocations involving the immunoglobulin lambda (IgL) gene locus were present in 10% of patients, and indicative of poor prognosis. This was particularly true for IgL-MYC gene translocations, which coincided with focal amplifications of enhancers at both loci. Importantly, 78% of IgL-MYC translocations co-occurred with hyperdiploid disease, a marker of standard risk, suggesting that IgL-MYC-translocated myelomas were being misclassified.

In addition, patients with myelomas carrying IgL translocations derived no survival benefit from immunomodulatory drugs such as lenalidomide. This may be because the IgL gene's activity was resistant to the mechanism of action of those drugs, or because the lenalidomide family of drugs promotes the destruction of Ikaros proteins, which bind especially tightly to the IgL gene locus.

"This [IgL translocation] could be different than other markers that we currently use in myeloma, because it may influence which drugs physicians may choose in both initial treatment as well as maintenance therapy," said senior author Dr. Lawrence Boise, professor of hematology and medical oncology at Emory University School of Medicine. "Most patients who have an IgL translocation are actually being diagnosed as having standard risk disease, so this study has helped explain why some patients who we think will do well end up relapsing and dying early."

The study was published in the April 23, 2019, online edition of the journal Nature Communications.

Related Links:
Emory University School of Medicine

New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Gold Member
Hematology Analyzer
Medonic M32B

Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
GLOBE SCIENTIFIC, LLC