LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Diagnosis of Opitz C Syndrome Advanced

By LabMedica International staff writers
Posted on 16 Apr 2019
Image: The hand and foot a patient with Opitz C Syndrome (Photo courtesy of Dr. Jorge Avina).
Image: The hand and foot a patient with Opitz C Syndrome (Photo courtesy of Dr. Jorge Avina).
Opitz C syndrome (OCS), an ultra-rare disease that causes serious physical and intellectual disabilities, has a heterogeneous genetic base that makes its medical diagnostic and therapeutic intervention difficult.

Trigonocephaly, due to the premature fusion of the metopic suture, is one of its main characteristics and, while it is not exclusive, it has become mandatory and definitional of OCS. However, despite sharing several clinical manifestations, this disease does not show a genetic base shared by the affected people, and its hereditary transmission model is still unknown.

Scientists from the University of Barcelona (Spain) and the Research Institute Sant Joan de Déu (Barcelona, Spain) have investigated the genetic diagnosis of OCS. They were part of an international scientific collaboration that has been determining in the genetic diagnosis of other cases with severe affectations in the neuro-development that had been considered to be Opitz C syndrome.

In particular, the team has participated in the identification of new genetic mutations associated with Diphthamide biosynthesis protein 1 (DPH1) syndrome, a minority disease with a low prevalence among population in patients of two different families from Malta and Yemen. The joint collaboration analyzed the effect of the new mutations in the DPH1 gene that were identified in these patients and the ones that were previously mentioned in the scientific bibliography. Through the application of a biochemical trial and a computational model of the DPH1 protein and its variants, they could evaluate the enzymatic ability of the natural and mutated ways of this protein, related to the embryogenesis and organogenesis procedures.

The authors noted that whole exome sequencing (WES) is a powerful tool that will allow to identify the molecular basis of most (if not all) of the cases initially diagnosed with the OCS phenotype, as has been achieved in the three recent cases and thus, to re-diagnose each patient according with the particular molecular cause of the disease. The study was published on March 7, 2019, in the journal Expert Opinion on Orphan Drugs.

Related Links:
University of Barcelona
Research Institute Sant Joan de Déu

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more