New Risk Loci Identified for Polycystic Ovary Syndrome
By LabMedica International staff writers Posted on 09 Jan 2019 |

Image: A diagram showing normal and polycystic ovary syndrome, in the latter the ovaries may develop numerous small collections of fluid (follicles) and fail to regularly release eggs (Photo courtesy of Mayo Clinic).
Polycystic ovary syndrome is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis.
Polycystic ovary syndrome (PCOS) is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown.
An international team of scientists working with the University of Utah (Salt Lake City, UT) performed a genome-wide association study meta-analysis involving 10,074 individuals with PCOS and 103,164 without, leading to three previously undetected loci and 11 loci linked to the endocrine disorder in the past. Of those, 13 loci were associated with self-reported PCOS and cases diagnosed using National Institutes of Health or Rotterdam criteria.
PCOS diagnoses are based on excess androgen hormone levels and ovulatory dysfunction, the team explained, which represents roughly 7% of reproductive age women around the world. On the other hand, more general criteria from Rotterdam defined PCOS as polycystic ovarian morphology in combination with either hyperandrogenism or ovulatory dysfunction, representing an estimated 15% to 20% of women globally.
The team reported new associations at loci in or around the PLGRKT, ZBTB16, and MAPRE1 genes, which are believed to contribute to metabolic and reproductive pathways. The meta-analysis also led to 11 known risk loci, which were overrepresented for variants in and around genes from neuroendocrine and metabolic pathways. The set of known risk loci included half a dozen sites previously implicated in PCOS in women of Han Chinese ancestry, and a variant near the GATA4/NEIL2 genes that showed strong ties to the PCOS diagnosed using NIH criteria but weaker associations to the self-reported PCOS cases.
The authors concluded that the genetic underpinnings of PCOS implicate neuroendocrine, metabolic, and reproductive pathways in the pathogenesis of disease. Although specific phenotype stratified analyses are needed, genetic findings were consistent across the diagnostic criteria for all but one susceptibility locus, suggesting a common genetic architecture underlying the different phenotypes. The study was published on December 19, 2018, in the journal PLOS Genetics.
Related Links:
University of Utah
Polycystic ovary syndrome (PCOS) is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown.
An international team of scientists working with the University of Utah (Salt Lake City, UT) performed a genome-wide association study meta-analysis involving 10,074 individuals with PCOS and 103,164 without, leading to three previously undetected loci and 11 loci linked to the endocrine disorder in the past. Of those, 13 loci were associated with self-reported PCOS and cases diagnosed using National Institutes of Health or Rotterdam criteria.
PCOS diagnoses are based on excess androgen hormone levels and ovulatory dysfunction, the team explained, which represents roughly 7% of reproductive age women around the world. On the other hand, more general criteria from Rotterdam defined PCOS as polycystic ovarian morphology in combination with either hyperandrogenism or ovulatory dysfunction, representing an estimated 15% to 20% of women globally.
The team reported new associations at loci in or around the PLGRKT, ZBTB16, and MAPRE1 genes, which are believed to contribute to metabolic and reproductive pathways. The meta-analysis also led to 11 known risk loci, which were overrepresented for variants in and around genes from neuroendocrine and metabolic pathways. The set of known risk loci included half a dozen sites previously implicated in PCOS in women of Han Chinese ancestry, and a variant near the GATA4/NEIL2 genes that showed strong ties to the PCOS diagnosed using NIH criteria but weaker associations to the self-reported PCOS cases.
The authors concluded that the genetic underpinnings of PCOS implicate neuroendocrine, metabolic, and reproductive pathways in the pathogenesis of disease. Although specific phenotype stratified analyses are needed, genetic findings were consistent across the diagnostic criteria for all but one susceptibility locus, suggesting a common genetic architecture underlying the different phenotypes. The study was published on December 19, 2018, in the journal PLOS Genetics.
Related Links:
University of Utah
Latest Molecular Diagnostics News
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
- RNA Blood Test Detects Cancers and Resistance to Treatment
- IL-6 Outperforms Traditional Tests for Early Sepsis Detection
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more