LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Banna Virus Detected by Reverse Transcription-Loop-Mediated Isothermal Amplification

By LabMedica International staff writers
Posted on 25 Dec 2018
Image: Visual detection of RT-LAMP assay. The tubes represent BAV strains and the negative controls used in the visual inspection. 1-7, BAV strains; 8-13, other viruses; 14, negative control (Photo courtesy of Wuhan Institute of Virology).
Image: Visual detection of RT-LAMP assay. The tubes represent BAV strains and the negative controls used in the visual inspection. 1-7, BAV strains; 8-13, other viruses; 14, negative control (Photo courtesy of Wuhan Institute of Virology).
Banna virus (BAV) has been isolated from a diverse group of vertebrates and invertebrates, including mosquitos, ticks, midges, cattle, and pigs from different regions in China, Vietnam, and Indonesia. BAV is considered to be an emerging pathogen that can result in human infections with possible manifestation of fever and viral encephalitis.

Reverse transcription-loop mediated isothermal amplification (RT-LAMP) is a nucleic acid amplification approach that amplifies reverse transcribed DNA from RNA using strand displacement DNA polymerase under isothermal conditions. Due to its rapidness, simplicity, sensitivity and specificity, RT-LAMP has been successfully applied in the detection of various RNA viruses.

Scientists at the Wuhan Institute of Virology (Wuhan, China) designed a set of six specific primers to target the segment 12 of BAV, and the reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) method. The team used various cells and spiked samples to test the RT-LAMP method.

In running the RT-LAMP assay, a DEAOU RNA Amplification Kit (RT-LAMP) was used. One step RT-PCR amplification for BAV was performed using Prime Script One Step RT-PCR Kit Ver.2. RNA was extracted from 140 μL of BAV-infected C6/36 cell culture supernatant, BAV-spiked human serum or filtered mosquito homogenate samples using the QIAamp Viral RNA Mini Kit.

The team reported that the amplification of the RT-LAMP assay can be obtained within 40 minutes at 65 °C. The results from specificity showed that only target BAVs RNA including genotypes A, B and C were amplified and the assay demonstrated a sensitivity of 3.6 × 10−2 PFU/mL, which was higher than conventional RT-PCR measurement. A good reliability for the assay was presented in the further evaluation for BAVs RNA from serial diluted BAV-spiked serum and 47 pools of field mosquito samples.

The authors concluded that they had successfully developed a RT-LAMP assay for the detection of BAV, which provides a potential new molecular diagnostic test for BAV that could be applied in the field or clinic in the future, and that may contribute to the preparedness for future outbreaks of a BAV endemic, especially for regions with limited resources available. The study was published online on November 2, 2018, in the International Journal of Infectious Diseases.

Related Links:
Wuhan Institute of Virology

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more