Circulating Tumor DNA Detects Early Melanoma Growth
|
By LabMedica International staff writers Posted on 11 Dec 2018 |

Image: A malignant melanoma of the skin (Photo courtesy of Juan Gaertner).
According to the National Cancer Institute, there were 91,270 new cases of melanoma in 2018, making up more than 5% of all new cancer cases. There were 9,320 estimated deaths in 2018, and 91.8% of patients survive five years or longer.
Measuring and monitoring tumor DNA (ctDNA) that naturally circulates in the blood of melanoma patients can not only reliably help reveal the early stages of cancer growth and spread but also uncover new treatment options that tumor genetic analysis alone may not.
Scientists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) analyzed blood-based ctDNA from 119 advanced-melanoma patients. The patients were divided into three groups based on the type of tumor they had and potential mutations that were common and reoccurring in those tumors.
The first group, comprised of 60 people, were patients with radiographically measurable metastatic melanoma, regardless of tumor mutation status. In this group, ctDNA testing revealed a targetable mutation in 38 of the 60 patients. In 33 of those patients, the mutations found using ctDNA matched the mutations found in tumor specimens. In two patients, ctDNA testing revealed a mutation that tumor testing had not.
In the second group, there were 29 patients with surgically removed high-risk (stage IIB-IV) melanoma whose tumor tissue revealed any of the seven common mutations. In this group, none of the patients whose melanoma tumors were surgically removed had evidence of disease before the study. However, five of 29 patients were discovered to have recurrent melanoma during the study, and in two of those cases, ctDNA was detected.
The third group had 30 patients who were receiving or had received therapy for advanced melanoma and had any of the seven common mutations. Of the 30, 17 experienced partial or complete response to therapy, which was confirmed using computer tomography (CT) scans over 8, 14, 25 and 38 week periods, and no ctDNA was found in those patients after an initial CT scan evaluation. In the remaining 13 patients, ctDNA was detected during their treatment. In four of those 13, the disease was detected simultaneously by a CT scan and ctDNA results. In four others, ctDNA results predicted disease progression that was confirmed by using CT scan.
Evan J. Lipson, MD, an associate professor of oncology and co-author of the study said, “When genetic testing of the tumor alone was used for some of the patients, it did not reveal any option for targeted therapy. It turned out that when we looked in the bloodstream, lo and behold, we found ctDNA that uncovered options for therapy that provided benefit for patients and that otherwise were not going to be used.” The study was published in the October 2018 issue of the journal Molecular Oncology.
Related Links:
Johns Hopkins Kimmel Cancer Center
Measuring and monitoring tumor DNA (ctDNA) that naturally circulates in the blood of melanoma patients can not only reliably help reveal the early stages of cancer growth and spread but also uncover new treatment options that tumor genetic analysis alone may not.
Scientists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) analyzed blood-based ctDNA from 119 advanced-melanoma patients. The patients were divided into three groups based on the type of tumor they had and potential mutations that were common and reoccurring in those tumors.
The first group, comprised of 60 people, were patients with radiographically measurable metastatic melanoma, regardless of tumor mutation status. In this group, ctDNA testing revealed a targetable mutation in 38 of the 60 patients. In 33 of those patients, the mutations found using ctDNA matched the mutations found in tumor specimens. In two patients, ctDNA testing revealed a mutation that tumor testing had not.
In the second group, there were 29 patients with surgically removed high-risk (stage IIB-IV) melanoma whose tumor tissue revealed any of the seven common mutations. In this group, none of the patients whose melanoma tumors were surgically removed had evidence of disease before the study. However, five of 29 patients were discovered to have recurrent melanoma during the study, and in two of those cases, ctDNA was detected.
The third group had 30 patients who were receiving or had received therapy for advanced melanoma and had any of the seven common mutations. Of the 30, 17 experienced partial or complete response to therapy, which was confirmed using computer tomography (CT) scans over 8, 14, 25 and 38 week periods, and no ctDNA was found in those patients after an initial CT scan evaluation. In the remaining 13 patients, ctDNA was detected during their treatment. In four of those 13, the disease was detected simultaneously by a CT scan and ctDNA results. In four others, ctDNA results predicted disease progression that was confirmed by using CT scan.
Evan J. Lipson, MD, an associate professor of oncology and co-author of the study said, “When genetic testing of the tumor alone was used for some of the patients, it did not reveal any option for targeted therapy. It turned out that when we looked in the bloodstream, lo and behold, we found ctDNA that uncovered options for therapy that provided benefit for patients and that otherwise were not going to be used.” The study was published in the October 2018 issue of the journal Molecular Oncology.
Related Links:
Johns Hopkins Kimmel Cancer Center
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







