In Vitro Technique Details Cancer Cell Attachment and Spread
By LabMedica International staff writers Posted on 02 Oct 2018 |

Image: Fluorescence images of pancreatic cancer microtumors following overnight culture. Papillary structures pile up on micro-attachment sites (diameter 30 micrometers), with numerous cells visible per patch. The rightmost microtumor has extended over two attachment sites. Nuclei, actin filaments, and microtubules are labeled with blue, green, and red fluorescent markers, respectively (Photo courtesy of Miyatake Y. et al., Scientific Reports, September 19, 2018).
A team of Japanese cell biologists described the development of a simple live-tumor in vitro imaging technique that enabled the study of the processes involved in the growth and spread of pancreatic cancer.
Investigators at Hokkaido University (Japan) reported in the September 19, 2018, online edition of the journal Scientific Reports that they had invented a new cell culture substrate comprising a coated nanoscale glass slide with etched islands of 30 micrometers in diameter, which allowed dynamic visualization of pancreatic ductal adenocarcinoma (PDAC) microtumors.
The investigators reported that when PDAC cells were cultured on the etched slides overnight, the cells self-organized into non-spheroidal microtumors that were anchored to the surface through cell-in-cell invasion (entosis). Using a time-lapse imaging system, they found that PDAC microtumors actively stretched to catch dead cell debris via filipodia (hair-like projections similar to those used for locomotion by some amoebas) and lamellipodia (cytoskeletal actin projections on the mobile edge of the cell).
The etched microplate method enabled visualization of live tumor dynamics; the microtumors endocytosed debris-derived surface nucleosides directly into vacuoles and then accumulated dead cell-derived phosphatidylserine (PS) on their surfaces (resulting in PS externalization, a cause of cancer immune evasion).
"Cancer studies so far either use cell cultures in which cancer cells do not necessarily behave naturally, or tissue samples that do not allow live observation. So there is a big gap in our knowledge of how cancer cells actually behave," said first author Dr. Yukiko Miyatake, assistant professor of pathology at Hokkaido University. "I hope this easy and low-cost technique will find widespread adoption. If the discoveries made during these first observations are physiologically or pathologically relevant phenomena, many more new hints may be gleaned for the development of more effective cancer treatment approaches."
Related Links:
Hokkaido University
Investigators at Hokkaido University (Japan) reported in the September 19, 2018, online edition of the journal Scientific Reports that they had invented a new cell culture substrate comprising a coated nanoscale glass slide with etched islands of 30 micrometers in diameter, which allowed dynamic visualization of pancreatic ductal adenocarcinoma (PDAC) microtumors.
The investigators reported that when PDAC cells were cultured on the etched slides overnight, the cells self-organized into non-spheroidal microtumors that were anchored to the surface through cell-in-cell invasion (entosis). Using a time-lapse imaging system, they found that PDAC microtumors actively stretched to catch dead cell debris via filipodia (hair-like projections similar to those used for locomotion by some amoebas) and lamellipodia (cytoskeletal actin projections on the mobile edge of the cell).
The etched microplate method enabled visualization of live tumor dynamics; the microtumors endocytosed debris-derived surface nucleosides directly into vacuoles and then accumulated dead cell-derived phosphatidylserine (PS) on their surfaces (resulting in PS externalization, a cause of cancer immune evasion).
"Cancer studies so far either use cell cultures in which cancer cells do not necessarily behave naturally, or tissue samples that do not allow live observation. So there is a big gap in our knowledge of how cancer cells actually behave," said first author Dr. Yukiko Miyatake, assistant professor of pathology at Hokkaido University. "I hope this easy and low-cost technique will find widespread adoption. If the discoveries made during these first observations are physiologically or pathologically relevant phenomena, many more new hints may be gleaned for the development of more effective cancer treatment approaches."
Related Links:
Hokkaido University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more