LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Study Describes Use of Malaria Parasite Protein to Collect CTCs

By LabMedica International staff writers
Posted on 30 Aug 2018
Image: A cancer cell colored with VAR2CSA (green) in a background of normal, white blood cells (red) (Photo courtesy of the University of Copenhagen Faculty of Health and Medical Sciences).
Image: A cancer cell colored with VAR2CSA (green) in a background of normal, white blood cells (red) (Photo courtesy of the University of Copenhagen Faculty of Health and Medical Sciences).
A novel technique uses the malaria parasite protein VAR2CSA to bind circulating tumor cells (CTCs) from a wide variety of cancer types for collection and analysis.

VAR2CSA (Variant Surface antigen 2-CSA), which binds specifically to the cancer cell membrane carbohydrate oncofetal chondroitin sulfate (ofCS), belongs to the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family.

Isolation of metastatic CTCs from cancer patients is of high value for disease monitoring and molecular characterization. Despite the development of many new CTC isolation platforms in the last decade, their isolation and detection has remained a challenge due to the lack of specific and sensitive markers.

In a feasibility study published in the August 16, 2018, online edition of the journal Nature Communications, investigators at the University of Copenhagen Faculty of Health and Medical Sciences (Denmark) presented a method for CTC isolation based on the specific binding of the malaria VAR2CSA protein to the tumor marker ofCS.

The investigators reported that VAR2CSA captured CTCs efficiently from hepatic, lung, pancreatic, and prostate cancer patients with minimal contamination of peripheral blood mononuclear cells. Furthermore, in 25 stage I–IV prostate cancer patient samples, CTC enumeration significantly correlated with disease stage.

"We have developed a method where we take a blood sample and with great sensitivity and specificity, we are able to retrieve the individual cancer cells from the blood. We catch the cancer cells in greater numbers than existing methods, which offers the opportunity to detect cancer earlier and thus improve outcome. You can use this method to diagnose broadly, as it is not dependent on cancer type. We have already detected various types of cancer cells in blood samples. And if there is a cancer cell in your blood, you have a tumor somewhere in your body," said senior author Dr. Ali Salanti, professor of immunology and microbiology at the University of Copenhagen Faculty of Health and Medical Sciences.

"Today, it is difficult to determine which stage cancer is at. Our method has enabled us to detect cancer at stages one, two, three and four. Based on the number of circulating tumor cells we find in someone's blood, we will be able to determine whether it is a relatively aggressive cancer or not so then to adjust the treatment accordingly," said Dr. Salanti.

Related Links:
University of Copenhagen Faculty of Health and Medical Sciences

New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
Candida Glabrata Test
ELIchrom Glabrata
New
Staining System
RAL DIFF-QUIK

DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
PURITAN MEDICAL