LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mutations Missed in Congenital Disease Screening

By LabMedica International staff writers
Posted on 06 Jun 2018
Image: The Infinium Methylation EPIC kit (Photo courtesy of Illumina).
Image: The Infinium Methylation EPIC kit (Photo courtesy of Illumina).
A type of genetic aberration has been identified as the cause of certain neurodevelopmental disorders and congenital diseases, such as autism and congenital heart disease, which are undetectable by conventional genetic testing.

The discovery that genetic mutations called epivariations are involved in these diseases could lead to more advanced diagnostic tools for many congenital and neurodevelopmental disorders. Epivariations are variations in the DNA molecule that do not affect the basic composition of the DNA molecule, called the DNA sequence, but result in a change in gene function.

An international team of scientists led by those at Icahn School of Medicine (New York, NY, USA) studied the genetic profiles of 489 patients with known neurodevelopmental or congenital disorders, who had all previously undergone genetic testing that identified no DNA mutations. These disorders had long been thought to have genetic origins, so the scientists suspected that even though conventional testing had not discovered a genetic cause for them, epivariations in their DNA could be present, resulting in gene dysfunction leading to disease.

To assess for epivariations, the team conducted methylation profiling, determining the DNA methylation within each patient's genome, finding epigenetic mutations that could be the cause of disease in approximately 20% of the studied cohort. Genome-wide DNA methylation profiling was performed using Human Methylation 450k BeadChips. Furthermore, in analyzing more than 5,000 genome profiles of individuals with no known diagnosis of congenital disease or neurodevelopmental disorder, the team discovered epigenetic mutations to be relatively common, and that they could typically be identified via a blood test.

The authors concluded that their study showed that epivariations are a relatively common feature in the human genome, that some are associated with changes in the local gene expression, and raise the possibility that they may be implicated in the etiology of developmental disorders. Andrew Sharp, PhD, an Associate Professor and lead investigator of the study, said, “These findings can open up a whole new world in what we know about disease and genetic profiling. Investigating DNA methylation when profiling genomes for disease mutations could help us uncover causative defects in congenital and neurodevelopmental diseases that have eluded us for years.” The study was published on May 25, 2018, in the journal Nature Communications.

Related Links:
Icahn School of Medicine

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more