We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Finnish Study Describes Activators of SIRT6 Gene

By LabMedica International staff writers
Posted on 17 Apr 2018
Print article
A team of Finnish researchers conducted a study to evaluate the differences in chemical features between inhibitors and activators of the cancer-related SIRT6 gene.

SIRT6 (Sirtuin 6) is a chromatin-associated enzyme that is required for normal base excision repair of DNA damage in mammalian cells. Deficiency of SIRT6 in mice leads to abnormalities that overlap with aging-associated degenerative processes. SIRT6 also promotes the repair of DNA double-strand breaks by the process of non-homologous end joining.

Flavonoids are polyphenolic secondary metabolites synthesized by plants and fungi with various pharmacological effects. Due to their many classes of biological activity, they have been studied extensively in drug development. Flavonoids have been shown to modulate the activity of a NAD+-dependent histone deacetylase, SIRT6. Since SIRT6 has been implicated in longevity, metabolism, DNA-repair, and inflammatory response reduction, it is an interesting target in inflammatory and metabolic diseases as well as in cancer.

Investigators at the University of Eastern Finland (Kuopio, Finland) reported in the March 7, 2018, online edition of the journal Scientific Reports that flavonoids could alter SIRT6 activity in a structure dependent manner. Catechin derivatives with galloyl moiety displayed significant inhibition potency against SIRT6 at 10 microMolar concentration. The most potent SIRT6 activator, cyanidin, belonged to the family of anthocyanidins, and produced a 55-fold increase in SIRT6 activity compared to the three to 10-fold increase for the others. Cyanidin was also found to significantly increase SIRT6 expression in human colon adenocarcinoma Caco-2 cells. Cyanidin also decreased the expression of the TWIST1 and GLUT1 cancer promoter genes in Caco-2 cells, while increasing the expression of the tumor suppressor FOXO3 gene in the cells.

Results from docking studies indicated possible binding sites for SIRT6 inhibitors and activators. Inhibitors likely attached in a manner that could disturb NAD+ binding. The putative activator-binding site was found next to a loop near the acetylated peptide substrate-binding site. In some cases, the activators changed the conformation of this loop suggesting that it might play a role in SIRT6 activation.

"The most interesting results of our study relate to cyanidin, which is an anthocyanin found abundantly in wild bilberry, blackcurrant, and lingonberry," said first author Dr. Minna Rahnasto-Rilla, pharmacology researcher at the University of Eastern Finland.

Related Links:
University of Eastern Finland

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
IGFBP-1 Rapid Test
AMNISTRIP
New
Hepatitis Delta Virus Test
HDV Ag – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: New Alzheimer’s studies have revealed disease biology, risk for progression, and potential for a novel blood test (Photo courtesy of Adobe Stock)

Novel Blood Test Could Reveal Alzheimer’s Disease Biology and Risk for Progression

The inability to diagnose Alzheimer’s disease, the most prevalent form of dementia in the elderly, at an early stage of molecular pathology is considered a key reason why treatments fail in clinical trials.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue (Photo courtesy of Ozcan Research Group)

AI-Based Tissue Staining Detects Amyloid Deposits Without Chemical Stains or Polarization Microscopy

Systemic amyloidosis, a disorder characterized by the buildup of misfolded proteins in organs and tissues, presents significant diagnostic difficulties. The condition affects millions of people each year,... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
CELLAVISION AB