LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cancer Progression Linked to Activity of Exosomes and Exomeres

By LabMedica International staff writers
Posted on 08 Mar 2018
Print article
Image: Atomic force microscopy image of exosomes (white ball-like structures) and exomeres (purple and yellow) secreted by melanoma tumor cells (Photo courtesy of Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center).
Image: Atomic force microscopy image of exosomes (white ball-like structures) and exomeres (purple and yellow) secreted by melanoma tumor cells (Photo courtesy of Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center).
The separation technique asymmetric flow field-flow fractionation (AF4) was used to identify and characterize two distinct exosome subpopulations, and the method enabled discovery of an abundant population of non-membranous nanoparticles termed "exomeres."

Exosomes are cell-derived vesicles that are present in many and perhaps all biological fluids, including blood, urine, and cultured medium of cell cultures. The reported diameter of exosomes is between 30 and 100 nanometers, which is larger than low-density lipoproteins but much smaller than red blood cells. Exosomes, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies fuse with the plasma membrane, or they are released directly from the plasma membrane. Exosomes have specialized functions and play a key role in coagulation, intercellular signaling, and waste management. Consequently, there is a growing interest in the clinical applications of exosomes for prognosis, therapy, and as biomarkers for health and disease.

The heterogeneity of exosomal populations has hindered understanding of their biogenesis, molecular composition, biodistribution, and functions. To study exosomes, investigators at Weill Cornell Medicine (New York, NY, USA) employed asymmetric flow field-flow fractionation (AF4). AF4 is a fractionation method used for the characterization of nanoparticles, polymers and proteins, which is based on the theory of field flow fractionation. Field flow fractionation (FFF) is based on laminar flow of particles in a solution. These sample components will change levels and speed based on their size/mass. Since these components will be travelling at different speeds, separation occurs AF4 is distinct from FFF because it contains only one permeable wall so the crossflow is caused only by the carrier liquid. The crossflow is induced by the carrier liquid constantly exiting by way of the semi-permeable wall on the bottom of the channel.

The investigators reported in the February 19, 2018, online edition of the journal Nature Cell Biology that by employing the AF4 technique, they identified two exosome subpopulations (large exosome vesicles, Exo-L, 90–120 nanometers; small exosome vesicles, Exo-S, 60–80 nanometers) and discovered an abundant population of non-membranous nanoparticles termed "exomeres" (approximately 35 nanometers).

Exomere proteomic profiling revealed that there was enrichment in metabolic enzymes and hypoxia, microtubule, and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signaling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signaling pathways, respectively. Exo-S, Exo-L, and exomeres each had unique N-glycosylation, protein, lipid, DNA, and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions.

"We found that exomeres are the most predominant particle secreted by cancer cells," said senior author Dr. David Lyden, professor of pediatric cardiology at Weill Cornell Medicine. "They are smaller and structurally and functionally distinct from exosomes. Exomeres largely fuse with cells in the bone marrow and liver, where they can alter immune function and metabolism of drugs. The latter finding may explain why many cancer patients are unable to tolerate even small doses of chemotherapy due to toxicity."

"Cancer is truly a systemic disease that requires multi-organ involvement to progress," said Dr. Lyden. "Our finding that tumor cells secrete these three distinct nanoparticles, that then target cells in different organs reflects this important aspect of the disease. Based on our findings, the next phase will be to measure exosomes and exomeres in plasma samples to help predict organs that may be targeted for metastasis during tumor progression. This will help us better understand the biology of cancer, guide therapeutic decisions and develop novel therapies."

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.