Ovarian Cancer Risk May Be Paternally Inherited
|
By LabMedica International staff writers Posted on 01 Mar 2018 |

Image: Diagrams for X-linked inheritance when cancer status is specific to women (all carrier men are effectively disease censored). Two family patterns with a pair of first-degree affected women are the maternal grandmother (MGM) family and the paternal grandmother (PGM) family (Photo courtesy of Roswell Park Cancer Institute).
A history of ovarian cancer among first-order relatives remains the strongest and best-characterized predictor of ovarian cancer risk and a main determinant of genetic testing referral.
The evidence for a monogenic, autosomal dominant mode of inherited risk dates to the pre- breast cancer 1, early onset gene (BRCA) era where studies focused on assessing heritability using affected first-order and second-order female relatives.
Scientists at Roswell Park Cancer Institute (Buffalo, NY, USA) and their colleagues first identified 3,499 grandmother-granddaughter pairs from a familial ovarian cancer registry that encompassed information on more than 50,000 individuals from 2,600 families collected over several decades. They whittled this set down to the 892 pairs, providing clues to ovarian cancer risk transmission, which included 157 granddaughters with ovarian cancer.
In an effort to tease out the basis of this X-linked inheritance, the scientists did exome sequencing on 159 BRCA1/2 mutation-negative women from the registry, focusing on germline X chromosome and BRCA1 coding sequences. The group included 49 ovarian cancer-affected women with affected mothers, 46 cases who had an affected sister and unaffected mother, and seven ovarian cancer-affected women with an affected sister and mother.
The team found that overlapping ovarian cancer diagnoses were more common in the paternal grandmother-granddaughter pairs, where the cancer rate was more than 28% than in the pairs involving maternal grandmothers and their granddaughters. The latter pairs had an ovarian cancer rate just shy of 14%. The presence of ovarian cancer in a paternal grandmother, but not a maternal grandmother, coincided with earlier age of onset in affected granddaughters. They tracked down a missense mutation in the MAGE Family Member C3 (MAGEC3), a gene previously put forward as a potential X-linked tumor suppressor. The variant was in linkage disequilibrium with other nearby variants, suggesting there might be an alternative causal variant or a related haploblock in the X chromosome region identified.
The authors concluded that they had demonstrated that a genetic locus on the X-chromosome contributes to ovarian cancer risk. An X-linked pattern of inheritance has implications for genetic risk stratification. Women with an affected paternal grandmother and sisters of affected women are at increased risk for ovarian cancer.
Kevin H. Eng, PhD, an assistant professor of oncology and the lead author said. “Our study may explain why we find families with multiple affected daughters: because a dad's chromosomes determine the sex of his children, all of his daughters have to carry the same X-chromosome genes.” The study was published on February 15, 2018, in the journal PLOS Genetics.
Related Links:
Roswell Park Cancer Institute
The evidence for a monogenic, autosomal dominant mode of inherited risk dates to the pre- breast cancer 1, early onset gene (BRCA) era where studies focused on assessing heritability using affected first-order and second-order female relatives.
Scientists at Roswell Park Cancer Institute (Buffalo, NY, USA) and their colleagues first identified 3,499 grandmother-granddaughter pairs from a familial ovarian cancer registry that encompassed information on more than 50,000 individuals from 2,600 families collected over several decades. They whittled this set down to the 892 pairs, providing clues to ovarian cancer risk transmission, which included 157 granddaughters with ovarian cancer.
In an effort to tease out the basis of this X-linked inheritance, the scientists did exome sequencing on 159 BRCA1/2 mutation-negative women from the registry, focusing on germline X chromosome and BRCA1 coding sequences. The group included 49 ovarian cancer-affected women with affected mothers, 46 cases who had an affected sister and unaffected mother, and seven ovarian cancer-affected women with an affected sister and mother.
The team found that overlapping ovarian cancer diagnoses were more common in the paternal grandmother-granddaughter pairs, where the cancer rate was more than 28% than in the pairs involving maternal grandmothers and their granddaughters. The latter pairs had an ovarian cancer rate just shy of 14%. The presence of ovarian cancer in a paternal grandmother, but not a maternal grandmother, coincided with earlier age of onset in affected granddaughters. They tracked down a missense mutation in the MAGE Family Member C3 (MAGEC3), a gene previously put forward as a potential X-linked tumor suppressor. The variant was in linkage disequilibrium with other nearby variants, suggesting there might be an alternative causal variant or a related haploblock in the X chromosome region identified.
The authors concluded that they had demonstrated that a genetic locus on the X-chromosome contributes to ovarian cancer risk. An X-linked pattern of inheritance has implications for genetic risk stratification. Women with an affected paternal grandmother and sisters of affected women are at increased risk for ovarian cancer.
Kevin H. Eng, PhD, an assistant professor of oncology and the lead author said. “Our study may explain why we find families with multiple affected daughters: because a dad's chromosomes determine the sex of his children, all of his daughters have to carry the same X-chromosome genes.” The study was published on February 15, 2018, in the journal PLOS Genetics.
Related Links:
Roswell Park Cancer Institute
Latest Molecular Diagnostics News
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








