LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Epigenetic Signatures Show Promise for Diagnosing Neurodevelopmental Disorders

By LabMedica International staff writers
Posted on 15 Feb 2018
Image: The Infinium methylation EPIC arrays for epigenome-wide association studies (Photo courtesy of Illumina).
Image: The Infinium methylation EPIC arrays for epigenome-wide association studies (Photo courtesy of Illumina).
Genome-wide DNA methylation signatures have been discovered for several neurodevelopmental Mendelian disorders, which clinically could complement existing molecular tests.

The so-called epi-signatures might be particularly useful in testing for several syndromes at once and to help classify variants of unknown significance. In addition to constitutional disorders, they might find applications in cancer diagnostics.

Scientists at the Western University (London, ON, Canada) and their collaborators analyzed peripheral blood DNA samples from nearly 300 patients with one of 14 Mendelian conditions, all neurodevelopmental syndromes that have been associated with defects in epigenetic regulation as well as from approximately 650 healthy controls. To generate the DNA methylation profiles, they used Illumina's HumanMethylation450 bead chip or their Infinium methylation EPIC arrays.

The team demonstrated that specific but partially overlapping DNA methylation signatures are associated with many of these conditions. The degree of overlap among these epi-signatures is minimal, further suggesting that, consistent with the initial event, the downstream changes are unique to every syndrome. In addition, by combining these epi-signatures, they demonstrated that a machine learning tool can be built to concurrently screen for multiple syndromes with high sensitivity and specificity, and they highlight the utility of this tool in solving ambiguous case subjects presenting with variants of unknown significance, along with its ability to generate accurate predictions for subjects presenting with the overlapping clinical and molecular features associated with the disruption of the epigenetic machinery.

Bekim Sadikovic, PhD, DABMGG, FACMG, an associate professor of pathology and laboratory medicine and the lead investigator of the study said, “Once we introduce this in a clinical setting and start generating larger and larger databases, with clinical information linked to them, much like what happened with microarray testing and now exome sequencing, we will uncover what other genes or conditions may have these epi-signatures. I think the best way forward, from a discovery standpoint, is to put methylation testing into routine clinical use in these patient populations that normally get genomic profiles and allow the data itself to give us additional utility.” The study was published on January 4, 2018, in the American Journal of Human Genetics.

Related Links:
Western University

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more