LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Early Disease Detection Made Easier with Aptamer-Related Blood Test

By LabMedica International staff writers
Posted on 01 Jan 2018
Print article
Image: By attaching specific aptamer molecules to a DNA backbone, researchers have made it easier to detect rare molecules associated with early disease (Photo courtesy of Dr. Joshua Edel, Imperial College London).
Image: By attaching specific aptamer molecules to a DNA backbone, researchers have made it easier to detect rare molecules associated with early disease (Photo courtesy of Dr. Joshua Edel, Imperial College London).
A novel, highly sensitive blood test for a wide range of serum proteins combines aptamer-DNA capture molecules with nanopore-based single molecule sensing.

Nucleic acid aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues, and organisms. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic.

Investigators at Imperial College London (United Kingdom) recently described a fully flexible, scalable, and low-cost detection platform to sense multiple protein targets simultaneously by grafting specific aptamer sequences along the backbone of a double-stranded DNA carrier.

Protein bound to the aptamer produced unique ionic current signatures, which facilitated accurate target recognition. This powerful approach enabled the investigators to differentiate individual protein sizes via characteristic changes in the sub-peak current. By using DNA carriers it was possible to perform single-molecule screening in human serum at ultra-low protein concentrations.

The investigators pointed out that the system could be expanded to more than five different aptamers, allowing simultaneous detection of multiple biomarkers. Furthermore, since the biomarkers were detected in human serum, preparation time was minimized and was less costly than traditional tests to detect these proteins.

Contributing author Dr. Alex Ivanov, research fellow in the department of chemistry at Imperial College London, said, "The detection of single molecules of biomarkers represents the ultimate in sensitivity for early diagnosis. We have now shown that this is possible to perform such measurements in real human samples, opening up the potential for meaningful early diagnosis."

The aptamer-based nanopore analytical method was described in the November 16, 2017, online edition of the journal Nature Communications.

Related Links:
Imperial College London

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more