LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MicroRNA-based Assay Proposed for Early Detection of Cancer

By LabMedica International staff writers
Posted on 13 Nov 2017
Image: A scanning electron micrograph (SEM) of an ovarian cancer cell (Photo courtesy of Steve Gschmeissner / SPL).
Image: A scanning electron micrograph (SEM) of an ovarian cancer cell (Photo courtesy of Steve Gschmeissner / SPL).
Cancer researchers have proposed using a network of circulating microRNAs to diagnose ovarian carcinoma at a stage earlier than currently possible.

MicroRNAs (miRNAs) are a family of noncoding 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Screening techniques are currently not available for early stage ovarian cancer, making it challenging to diagnose the disease. As recent studies have suggested a role for non-coding RNAs in epithelial ovarian cancer (EOC), investigators at Brigham and Women's Hospital (Boston, MA, USA) and Dana-Farber Cancer Institute (Boston, MA, USA) evaluated the diagnostic potential for a serum miRNA neural network for detection of ovarian cancer.

The investigators combined small RNA sequencing from 179 human serum samples with neural network analysis to produce a miRNA algorithm for diagnosis of EOC. The model significantly outperformed CA125 testing and functioned well regardless of patient age, histology, or stage. Among 454 patients with various diagnoses, the miRNA neural network had 100% specificity for ovarian cancer. After using 325 samples to adapt the neural network to qPCR measurements, the model was validated using 51 independent clinical samples, with a positive predictive value of 91.3% and negative predictive value of 78.6%. Biologic relevance was tested using in situ hybridization on 30 pre-metastatic lesions, showing intratumoral concentration of relevant miRNAs.

"The key is that this test is very unlikely to misdiagnose ovarian cancer and give a positive signal when there is no malignant tumor. This is the hallmark of an effective diagnostic test," said senior author Dr. Dipanjan Chowdhury, chief of the division of radiation and genomic stability at Dana-Farber Cancer Institute.

The miRNA test for early detection of ovarian cancer was described in the October 31, 2017, online edition of the journal eLife.

Related Links:
Brigham and Women's Hospital
Dana-Farber Cancer Institute

Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Automated MALDI-TOF MS System
EXS 3000

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more