Genetic Mutation Linked to New Form of Diabetes
|
By LabMedica International staff writers Posted on 02 Nov 2017 |

Image: The ABI 3730xl capillary DNA sequencer (Photo courtesy of Thermo Fisher Scientific).
Finding the genetic cause of rare familial diabetes (monogenic diabetes) provides new biological insights into human pancreas development and function, as well as potentially novel therapeutic targets with important treatment implications.
Maturity-onset diabetes of the young (MODY) is a type of monogenic diabetes that develops as a result of beta-cell dysfunction and generally presents itself in affected patients before they are 25 years old. Individuals with MODY also tend to be non-obese, non-insulin-dependent and have an autosomal dominant inheritance of diabetes.
An international team of scientists working with those at the University of Exeter Medical School, (Exeter, UK) studied different cohorts comprised of a discovery cohort comprises 38 European probands with strong MODY-like phenotype who did not have mutations in the three most common MODY genes; a replication cohort was derived from 469 non-Finnish European routine MODY diagnostic referrals; a Finnish-European replication MODY cohort, that consisted of 80 patients who were routinely referred for MODY diagnostic testing; and two other cohorts.
Plasma glucose was analyzed using the Hemocue Glucose System. Serum insulin was measured by an AutoDelfia fluoroimmunometric assay and serum C-peptide by Cobas e411 electrochemiluminometric immunoanalysis. Serum gastric inhibitory polypeptide (GIP) was analyzed using Millipore’s Human GIP Total ELISA. They sequenced MODY cases with unknown etiology and compared variant frequencies to large public databases. Amplicons were sequenced and reactions were analyzed on an ABI 3730 Capillary sequencer.
The investigators found that from 36 European patients, they identify two probands with novel Regulatory Factor X6 (RFX6) heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population. They found similar results in 348 non-Finnish Europeans and 80 Finnish replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common MODY mutations. The hyperglycemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Of 27 patients who expressed RFX6-MODY, 81% were female and most patients were around 32 years old at the time of diagnosis.
Michael L. Weedon, PhD, the lead author of the study, said, “There has been limited recent success in finding new MODY genes. The reason for this limited success is the difficulty of distinguishing monogenic diabetes patients from those with type 1 diabetes, or from the increasing number of patients with early-onset type 2 diabetes due to rising rates of obesity.” The study was published on October 12, 2017, in the journal Nature Communications.
Related Links:
University of Exeter Medical School
Maturity-onset diabetes of the young (MODY) is a type of monogenic diabetes that develops as a result of beta-cell dysfunction and generally presents itself in affected patients before they are 25 years old. Individuals with MODY also tend to be non-obese, non-insulin-dependent and have an autosomal dominant inheritance of diabetes.
An international team of scientists working with those at the University of Exeter Medical School, (Exeter, UK) studied different cohorts comprised of a discovery cohort comprises 38 European probands with strong MODY-like phenotype who did not have mutations in the three most common MODY genes; a replication cohort was derived from 469 non-Finnish European routine MODY diagnostic referrals; a Finnish-European replication MODY cohort, that consisted of 80 patients who were routinely referred for MODY diagnostic testing; and two other cohorts.
Plasma glucose was analyzed using the Hemocue Glucose System. Serum insulin was measured by an AutoDelfia fluoroimmunometric assay and serum C-peptide by Cobas e411 electrochemiluminometric immunoanalysis. Serum gastric inhibitory polypeptide (GIP) was analyzed using Millipore’s Human GIP Total ELISA. They sequenced MODY cases with unknown etiology and compared variant frequencies to large public databases. Amplicons were sequenced and reactions were analyzed on an ABI 3730 Capillary sequencer.
The investigators found that from 36 European patients, they identify two probands with novel Regulatory Factor X6 (RFX6) heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population. They found similar results in 348 non-Finnish Europeans and 80 Finnish replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common MODY mutations. The hyperglycemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Of 27 patients who expressed RFX6-MODY, 81% were female and most patients were around 32 years old at the time of diagnosis.
Michael L. Weedon, PhD, the lead author of the study, said, “There has been limited recent success in finding new MODY genes. The reason for this limited success is the difficulty of distinguishing monogenic diabetes patients from those with type 1 diabetes, or from the increasing number of patients with early-onset type 2 diabetes due to rising rates of obesity.” The study was published on October 12, 2017, in the journal Nature Communications.
Related Links:
University of Exeter Medical School
Latest Molecular Diagnostics News
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more




 assay.jpg)



