LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Whole Genome Sequencing Identifies New Autism Signature

By LabMedica International staff writers
Posted on 25 Oct 2017
Image: The HiSeq X Ten sequencing system (Photo courtesy of Illumina).
Image: The HiSeq X Ten sequencing system (Photo courtesy of Illumina).
Current genetic tests for autism scan broad portions of the genome for DNA insertions or deletions that have previously been linked to autism. Other tests look for changes in the DNA building blocks of certain genes, but these tests flag only about 10% to 30% of cases.

Autism has genetic roots, but most cases can not be explained by current genetic tests.An analysis of the complete genomes of 2,064 people reveals that multiple genetic variations could contribute to autism. The work suggests that scanning whole genomes may one day be useful for clinical diagnostics.

Scientists at the Howard Hughes Medical Institute (Seattle, WA, USA) and their colleagues sequenced the genomes of 516 autistic children with no family history of autism, and no genetic anomalies detected by current tests. The team also sequenced the genomes of the children's parents and an unaffected sibling equaling 2,064 people in total. They analyzed each family's data, looking for genetic variations that occurred only in children with autism. Genomes were sequenced at the New York Genome Center (NYGC) using 1 μg of DNA, an Illumina polymerase chain reaction (PCR)-free library protocol, and sequencing on the Illumina X Ten platform. The team used the Quick Change Lightning Multi Site-Directed Mutagenesis Kit.

The investigators identified genetic changes that disrupted gene function and led to altered protein production, and genetic deletions too small to see with current tests. They also found changes in areas of the genome that do not contain genes, but are responsible for turning genes on. They compared the number of variations in autistic children's genomes with that of their unaffected siblings and found that children with autism were significantly more likely to have three or more different kinds of genetic variations.

Evan E. Eichler, PhD, the lead author of the study, said, “In five to 10 years, whole genome sequencing could be the most informative tool for autism diagnosis. Children with autism were significantly more likely to have three or more different kinds of genetic variations and that suggests that a combination of sporadic genetic variations could contribute to autism.” The study was published on September 28, 2017, in the journal Cell.

Related Links:
Howard Hughes Medical Institute

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Laboratory Software
ArtelWare

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more