Biomarker Traces Glaucoma Development and Progression
|
By LabMedica International staff writers Posted on 17 May 2017 |

Image: At the center of the image is an optic nerve with glaucoma damage, signified by loss of color and a round rim of pink tissue within the nerve (Photo courtesy of Carla J. Siegfried, Washington University School of Medicine).
A potential biomarker protein has been identified that was elevated in rodent models of glaucoma and in fluid taken from the eyes of human patients with the disease.
Glaucoma is the second leading cause of blindness worldwide. Physicians often use rather arbitrary endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases.
Investigators at Washington University School of Medicine worked initially with a mouse glaucoma model to try to identify molecular markers linked to development and progression of the disease.
They reported in the May 4, 2017, online edition of the journal JCI Insight that the protein growth differentiation factor 15 (Gdf15) was associated with retinal ganglion cell death. Gdf15 expression in the retina was specifically increased after acute injury to retinal ganglion cell axons and in a mouse chronic glaucoma model. Working with a rat glaucoma model, they further demonstrated that the ganglion cell layer was probably one of the sources of secreted Gdf15 and that Gdf15 diffused to and could be detected in aqueous humor (AH) of the eye.
In validating these findings in human patients with glaucoma, the investigators found not only that Gdf15 was increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated Gdf15 levels were significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing.
"That was exciting because comparing the fluid from patients without glaucoma to those with glaucoma, the Gdf15 biomarker was significantly elevated in the glaucoma patients," said senior author Dr. Rajendra S. Apte, professor of ophthalmology and visual sciences at Washington University School of Medicine. "We also found that higher levels of the molecule were associated with worse functional outcomes, so this biomarker seems to correlate with disease severity."
"There has not been a reliable way to predict which patients with glaucoma has a high risk of rapid vision loss," said Dr. Apte. "But we have identified a biomarker that seems to correlate with disease severity in patients, and what that marker is measuring is stress to the cells rather than cell death. Other glaucoma tests are measuring cell death, which is not reversible, but if we can identify when cells are under stress, then there is the potential to save those cells to preserve vision."
Glaucoma is the second leading cause of blindness worldwide. Physicians often use rather arbitrary endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases.
Investigators at Washington University School of Medicine worked initially with a mouse glaucoma model to try to identify molecular markers linked to development and progression of the disease.
They reported in the May 4, 2017, online edition of the journal JCI Insight that the protein growth differentiation factor 15 (Gdf15) was associated with retinal ganglion cell death. Gdf15 expression in the retina was specifically increased after acute injury to retinal ganglion cell axons and in a mouse chronic glaucoma model. Working with a rat glaucoma model, they further demonstrated that the ganglion cell layer was probably one of the sources of secreted Gdf15 and that Gdf15 diffused to and could be detected in aqueous humor (AH) of the eye.
In validating these findings in human patients with glaucoma, the investigators found not only that Gdf15 was increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated Gdf15 levels were significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing.
"That was exciting because comparing the fluid from patients without glaucoma to those with glaucoma, the Gdf15 biomarker was significantly elevated in the glaucoma patients," said senior author Dr. Rajendra S. Apte, professor of ophthalmology and visual sciences at Washington University School of Medicine. "We also found that higher levels of the molecule were associated with worse functional outcomes, so this biomarker seems to correlate with disease severity."
"There has not been a reliable way to predict which patients with glaucoma has a high risk of rapid vision loss," said Dr. Apte. "But we have identified a biomarker that seems to correlate with disease severity in patients, and what that marker is measuring is stress to the cells rather than cell death. Other glaucoma tests are measuring cell death, which is not reversible, but if we can identify when cells are under stress, then there is the potential to save those cells to preserve vision."
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read more
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read more
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more







 Analyzer.jpg)
