LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Drivers Discovered for DiGeorge Syndrome Kidney Defects

By LabMedica International staff writers
Posted on 10 Feb 2017
Image: A diagram depicting the deletion and some of the genes in the DiGeorge syndrome locus (Photo courtesy of Genetics 4 Medics).
Image: A diagram depicting the deletion and some of the genes in the DiGeorge syndrome locus (Photo courtesy of Genetics 4 Medics).
DiGeorge syndrome is a chromosomal disorder that can lead to malformations in multiple organs and it is the most common microdeletion syndrome, in which a portion of a chromosome is missing.

The DiGeorge syndrome is a debilitating, multisystemic condition that features, with variable expressivity, cardiac malformations, velopharyngeal insufficiency, hypoparathyroidism with hypocalcemia, and thymic aplasia with immune deficiency.

A large team of scientists led by those at Columbia University Medical Center performed genomic analyses in 2,666 children with congenital anomalies of the kidney and urinary tract which is the largest pediatric cohort of these disorders, and 22,094 controls to identify structural variants associated with these defects. They performed genomewide genotyping for analysis of copy-number variation by means of high-density single-nucleotide polymorphism (SNP) microarrays.

They performed high-throughput next-generation sequencing for eight genes in the 370-kb minimal region of overlap for the DiGeorge syndrome in samples obtained from an additional 526 patients using microfluidic polymerase-chain-reaction capture coupled with next-generation sequencing on the 2500 HiSeq system.

The scientists’ analysis identified deletions at the terminal portion of the 22q11.2 DiGeorge locus as the second most common microdeletion in patients with kidney malformations. This study mapped the candidate gene for kidney disease in DiGeorge syndrome to a smaller region containing only nine genes. The team resequenced all genes included in the critical 22q11.2 region identified five out of 586 patients with kidney and urinary tract defects that had novel heterozygous protein-altering variants, including a premature termination codon, in CRK-Like Proto-Oncogene, Adaptor Protein gene (CRKL). Inactivation of the same gene in mouse embryos finally proved its role as the main driver.

Simone Sanna-Cherchi, MD, an assistant professor of medicine and senior author of the study said, “This study represents a critical step forward in understanding the genetic basis of congenital kidney defects associated with DiGeorge syndrome and in the general population. Expanding our knowledge of the genetics of kidney development and malformations will give us additional tools needed to diagnose this variant of DiGeorge syndrome and gives us a potential therapeutic target.” The study was published on January 25, 2017, in The New England Journal of Medicine.

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more