LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Interrupting a Molecular Signaling Pathway to Treat Prostate Cancer

By LabMedica International staff writers
Posted on 11 Jan 2017
Image: The molecular model of the protein IkappaBalpha (NF-kappaB inhibitor, alpha) (Photo courtesy of Wikimedia Commons).
Image: The molecular model of the protein IkappaBalpha (NF-kappaB inhibitor, alpha) (Photo courtesy of Wikimedia Commons).
Cancer researchers have traced a molecular pathway that is active in treatment resistant prostate cancer and have suggested therapeutic strategies to circumvent it.

Androgen deprivation therapy is the most effective treatment for advanced prostate cancer, but almost all cancer eventually becomes castration resistant, and the underlying mechanisms are largely unknown. Investigators at The Scripps Research Institute (Juptier, FL, USA) recently identified one of these mechanisms.

They investigators reported in the December 29, 2016, online edition of the journal Molecular Cell that an intrinsic constitutively activated feedforward signaling circuit was formed during the emergence of castration-resistant prostate cancer (CRPC). This signaling pathway comprised the microRNA miR-196b-3p and the proteins IkappaBalpha (NF-kappaB inhibitor, alpha)/NF-kappaB (nuclear factor of kappa light polypeptide gene enhancer in B-cells), Meis2 (Homeobox protein Meis2), and PPP3CC (protein phosphatase 3 catalytic subunit gamma).

NF-kappaB inhibitor, alpha is one member of a family of cellular proteins that function to inhibit the NF-kappaB transcription factor. IkappaBalpha inhibits NF-kappaB by masking the nuclear localization signals of NF-kappaB proteins and keeping them sequestered in an inactive state in the cytoplasm. In addition, IkappaBalpha blocks the ability of NF-kappaB transcription factors to bind to DNA, which is required for NF-kappaB's proper functioning. Inactivation of the IkappaBalpha protein causes NF-kappaB to be chronically active in tumor cells and this activity contributes to the malignant state of these tumor cells.

The use of NF-kappaB inhibitors in treating cancer is complicated by severe side effects related to immunosuppression caused by indiscriminate inhibition of NF-kappaB in normal immune cells. However, the investigators suggested that targeting the other non-IkappaBalpha/NF-kappaB components in this signaling circuit would avoid the suppression of NF-kappaB in normal immune cells while keeping the potent anti-cancer efficacy.

"Disrupting this circuit by targeting any of its individual components blocks the expression of these transcription factors and significantly impairs therapy-resistant prostate cancer," said first author Dr. Ji-Hak Jeong, a research associate at The Scripps Research Institute.

Related Links:
The Scripps Research Institute


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more