LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Cause Identified for Previously Unrecognized Developmental Disorder

By LabMedica International staff writers
Posted on 11 Jan 2017
Image: An infant suffering from congenital hypotonia or muscle weakness (Photo courtesy of American Academy of Pediatrics).
Image: An infant suffering from congenital hypotonia or muscle weakness (Photo courtesy of American Academy of Pediatrics).
An international team of scientists has identified variants of the gene Early B-Cell Factor 3 (EBF3) causing a developmental disorder with features in common with autism.

The identification of these gene variants could lead to a better understanding of these complex conditions and opens the possibility of diagnosing other previously undiagnosed patients with similar clinical disorders.

Scientists at Baylor College of Medicine (Houston, TX, USA) investigated three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural central nervous system (CNS) malformations, ataxia, and genitourinary abnormalities.

The team used whole exome sequencing, a laboratory technique that allows the identification of all the genes in an individual's genome. In the patients, they identified two new variants of the gene EBF3 that were not present in the patients' parents. Mutations of EBF3 are rare in the general population but more common in a population of individuals with autism spectrum disorders and intellectual disability. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Their findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by aristaless-related homeobox (ARX)-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations.

Hsiao-Tuan Chao, MD, PhD, the lead author of the study said, “The gene is known to be essential for normal development of the nervous system. It is one of the key factors involved in how neurons develop and connect with each other, but has not been studied in detail. In animal models, mutations that cause the gene to lose its function result in death of the embryo. EBF3 had never before been associated with a disease.” The study was published on December 22, 2016, in the American Journal of Human Genetics.

Related Links:
Baylor College of Medicine

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
8-Channel Pipette
SAPPHIRE 20–300 µL

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more