Disease Genes Effect May Be Overcome by Other Gene Mutations
|
By Michal Siman-Tov Posted on 15 Nov 2016 |
A first-of-its-kind study, performed in the model yeast Saccharomyces cerevisiae, shows how “bad genes aren’t always bad news” in that the disease-causing effects of mutations in certain genes can be overcome by suppression-mutations in certain other genes. The study opens a new way for better understanding how some people naturally stay healthy despite having disease-causing mutations, and potentially a new path to better diagnostics and therapies of genetic disorders.
Though little has been known about the mechanisms of genetic suppression, researchers are uncovering the general rules behind it. An international team of researchers led by Professors Brenda Andrews, Charles Boone, and Frederick Roth of the University of Toronto School of Medicine (Toronto, Ontario, Canada) and Professor Chad Myers of the University of Minnesota-Twin Cities (Minneapolis, MN, USA) have compiled the first comprehensive set of suppressive mutations in a cell. Their findings could help explain how suppressive mutations combine with disease-causing mutations to reduce or even prevent a genetic disorder.
This curious bit of biology has come to light as increasing numbers of healthy people have had their genomes sequenced. Among them are a few who remain healthy despite carrying catastrophic mutations that usually cause debilitating disorders, such as Cystic Fibrosis or Fanconi anemia.
“We don’t really understand why some people with damaging mutations get the disease and some don’t. Some of this could be due to environment, but a lot of could be due to the presence of other mutations that are suppressing the effects of the first mutation,” said Prof. Roth. Certain suppression mutations can keep cells healthy despite otherwise damaging mutations. “If we know the genes in which these suppressive mutations occur, then we can understand how they relate to the disease-causing genes and that may guide future drug development,” said first author Dr. Jolanda van Leeuwen.
“A study like this has never been done on a global scale. And since it is not possible to do these experiments in humans, we used yeast as a model organism, in which we can know exactly how mutations affect the cell’s health,” said Dr. Van Leeuwen.
The researchers took a two-pronged approach. On the one hand, they analyzed all published data on known suppressive relationships between yeast genes. While informative, these results were inevitably skewed towards the most popular genes – the ones scientists have already studied in detail. So they also carried out an unbiased analysis by experimentally measuring how well the cells grew when they carried a damaging mutation on its own, or in combination with another mutation.
Because harmful mutations slow down cell growth, any improvement in growth rate was due to the suppressive mutation in a second gene. These experiments revealed hundreds of suppressor mutations for the known damaging mutations. Importantly, regardless of the approach, the data point to the same conclusion: to find suppressor genes, there is often no need to look far from the genes with damaging mutations. The genes tend to have related roles in the cell – mainly either that their protein products are physically located in the same place, or that they work in the same molecular pathway.
“We’ve uncovered fundamental principles of genetic suppression and show that damaging mutations and their suppressors are generally found in genes that are functionally related. Instead of looking for a needle in the haystack, we can now narrow down our focus when searching for suppressors of genetic disorders in humans,” said Prof. Boone.
The study, by van Leeuwen J, Pons C, et al, was published November 4, 2016, in the journal Science.
Related Links:
University of Toronto School of Medicine
University of Minnesota-Twin Cities
Though little has been known about the mechanisms of genetic suppression, researchers are uncovering the general rules behind it. An international team of researchers led by Professors Brenda Andrews, Charles Boone, and Frederick Roth of the University of Toronto School of Medicine (Toronto, Ontario, Canada) and Professor Chad Myers of the University of Minnesota-Twin Cities (Minneapolis, MN, USA) have compiled the first comprehensive set of suppressive mutations in a cell. Their findings could help explain how suppressive mutations combine with disease-causing mutations to reduce or even prevent a genetic disorder.
This curious bit of biology has come to light as increasing numbers of healthy people have had their genomes sequenced. Among them are a few who remain healthy despite carrying catastrophic mutations that usually cause debilitating disorders, such as Cystic Fibrosis or Fanconi anemia.
“We don’t really understand why some people with damaging mutations get the disease and some don’t. Some of this could be due to environment, but a lot of could be due to the presence of other mutations that are suppressing the effects of the first mutation,” said Prof. Roth. Certain suppression mutations can keep cells healthy despite otherwise damaging mutations. “If we know the genes in which these suppressive mutations occur, then we can understand how they relate to the disease-causing genes and that may guide future drug development,” said first author Dr. Jolanda van Leeuwen.
“A study like this has never been done on a global scale. And since it is not possible to do these experiments in humans, we used yeast as a model organism, in which we can know exactly how mutations affect the cell’s health,” said Dr. Van Leeuwen.
The researchers took a two-pronged approach. On the one hand, they analyzed all published data on known suppressive relationships between yeast genes. While informative, these results were inevitably skewed towards the most popular genes – the ones scientists have already studied in detail. So they also carried out an unbiased analysis by experimentally measuring how well the cells grew when they carried a damaging mutation on its own, or in combination with another mutation.
Because harmful mutations slow down cell growth, any improvement in growth rate was due to the suppressive mutation in a second gene. These experiments revealed hundreds of suppressor mutations for the known damaging mutations. Importantly, regardless of the approach, the data point to the same conclusion: to find suppressor genes, there is often no need to look far from the genes with damaging mutations. The genes tend to have related roles in the cell – mainly either that their protein products are physically located in the same place, or that they work in the same molecular pathway.
“We’ve uncovered fundamental principles of genetic suppression and show that damaging mutations and their suppressors are generally found in genes that are functionally related. Instead of looking for a needle in the haystack, we can now narrow down our focus when searching for suppressors of genetic disorders in humans,” said Prof. Boone.
The study, by van Leeuwen J, Pons C, et al, was published November 4, 2016, in the journal Science.
Related Links:
University of Toronto School of Medicine
University of Minnesota-Twin Cities
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







