LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Describe Aggressive Breast Cancer Molecular Mechanism

By LabMedica International staff writers
Posted on 11 Nov 2016
Image: The structural model of the SIRT2 protein (Photo courtesy of Wikimedia Commons).
Image: The structural model of the SIRT2 protein (Photo courtesy of Wikimedia Commons).
Cancer researchers have found that SIRT2, a member of the sirtuin family of enzymes, stabilizes Slug, a transcription factor that promotes the development, growth, and spread of basal-like breast cancer.

Overabundance of Slug protein is common in human cancer and represents an important determinant underlying the aggressiveness of basal-like breast cancer (BLBC). Despite its importance, this transcription factor is rarely mutated in BLBC, and the mechanism of its deregulation in cancer remains unknown.

To better understand the link between Slug and BLBC, investigators at Tufts University School of Medicine (Boston, MA, USA) screened BLBC cultures for factors that would stabilize Slug activity.

They reported in the October 25, 2016, online edition of the journal Cell Reports that Slug underwent acetylation-dependent protein degradation and identified the deacetylase SIRT2 as a key mediator of this post-translational mechanism. SIRT2 inhibition rapidly destabilized Slug, whereas SIRT2 overexpression extended Slug stability. SIRT2 deacetylated Slug protein at lysine residue K116 to prevent Slug degradation.

SIRT2 was frequently amplified and highly expressed in BLBC. Genetic depletion and pharmacological inactivation of SIRT2 in BLBC cells reversed Slug stabilization, caused the loss of clinically relevant pathological features of BLBC, and inhibited tumor growth. Without SIRT2, tumor cells had a more than 60% reduction in invasive capacity compared to normal basal-like tumor cells. SIRT2-depleted cells also had significantly decreased capacity for growth and self-renewal. This diminished malignancy could be reversed by artificially introducing Slug protein back into cells.

"Breast cancer is not one disease, and of the several distinct subtypes, basal-like breast cancer represents the most aggressive form. By targeting a master transcription factor regulator in basal-like cells, we were able to reduce malignant behaviors," said senior author Dr. Charlotte Kuperwasser, professor of developmental, molecular, and chemical biology at Tufts University School of Medicine. "Our findings now provide a molecular rationale for new approaches to help improve the poor clinical outcomes currently associated with these cancers."

"Cancer cells find sophisticated ways to regulate essential proteins they need for their survival and growth. The transcriptional factor Slug is one such protein and is often tightly regulated in both normal and cancer cells. While we have found that SIRT2 plays an important role in prolonging Slug expression, it is too soon to know whether targeting SIRT2 will be sufficient to abolish Slug entirely in cancer cells and therefore lead to tumor regression," said Dr. Kuperwasser. "A significant amount of work remains to be done before we can verify if targeting SIRT2 can be an Achilles' heel for treating basal-like breast cancers."

Related Links:
Tufts University School of Medicine

New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Test Reader
DIA5000
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B

DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
PURITAN MEDICAL