We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

RNA-Based Therapy Reverses Cartilage Damage in Osteoarthritis

By LabMedica International staff writers
Posted on 19 Oct 2016
Print article
Image: Researchers have found that injecting nanoparticles into an injured joint can inhibit the inflammation that contributes to the cartilage damage seen in osteoarthritis. Shown in green is an inflammatory protein in cartilage cells. After nanoparticles are injected, the inflammation is greatly reduced (Photo courtesy of the Pham Laboratory, Washington University School of Medicine).
Image: Researchers have found that injecting nanoparticles into an injured joint can inhibit the inflammation that contributes to the cartilage damage seen in osteoarthritis. Shown in green is an inflammatory protein in cartilage cells. After nanoparticles are injected, the inflammation is greatly reduced (Photo courtesy of the Pham Laboratory, Washington University School of Medicine).
A novel treatment for osteoarthritis (OA) is based on a nanoparticle delivery system that transports a specific anti-inflammatory siRNA (short interfering RNA) to the chondrocytes in damaged cartilage.

Osteoarthritis is a common debilitating joint disease for which there are few therapeutic options. Critical barriers to the successful development of osteoarthritis treatment include limited understanding of the pathways governing early cartilage degradation and ineffective delivery of therapeutic agents to the resident chondrocytes in the avascular cartilage.

A new treatment approach for OA has been developed by investigators at Washington University School of Medicine (St. Louis, MO, USA). They fabricated nanoparticles containing the peptide melittin bound to an siRNA that specifically suppressed the inflammatory factor NF-kappaB.

The investigators reported in the September 28, 2016, online edition of the journal Proceedings of the [U.S] National Academy of Sciences that a murine model of controlled knee joint impact injury allowed them to examine cartilage responses to injury at specific time points. They used this model to show that delivery of peptidic nanoparticles complexed to NF-kappaB siRNA significantly reduced early chondrocyte apoptosis and reactive synovitis.

The peptide–siRNA nanocomplexes were found to be nonimmunogenic, were freely and deeply penetrant to human OA cartilage, and persisted in chondrocytes for at least two weeks. The peptide–siRNA platform thus provided a clinically relevant and promising approach to overcoming the obstacles of drug delivery to the highly inaccessible chondrocytes.

“I see a lot of patients with osteoarthritis, and there is really no treatment,” said senior author Dr. Christine Pham, associate professor of medicine at Washington University School of Medicine. “We try to treat their symptoms, but even when we inject steroids into an arthritic joint, the drug only remains for up to a few hours, and then it’s cleared. These nanoparticles remain in the joint longer and help prevent cartilage degeneration.”

Related Links:
Washington University School of Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Unit-Dose Packaging solution
HLX
New
Flow Cytometer
BF – 710
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more