Sequins As Novel Internal Controls to Improve Genomic Analysis
By LabMedica International staff writers Posted on 16 Aug 2016 |

Image: Sequins are small stretches of synthetic DNA to be added as a standardization control to a DNA sample during sequencing, helping analyze the large data files generated for genomic analysis. The technology is based on the notion of mirror image DNA. Sequins are essentially “mirror” images of natural DNA sequences. They behave like natural DNA sequences but can be easily recognized as synthetic (Photo courtesy of Chris Hammang, Garvan Institute of Medical Research).
Researchers have developed an intuitive technology called “Sequins” – synthetic “mirror” DNA sequences that reflect the human genome and can be used to better map, navigate, and analyze complexity within the genome. Currently human genome Sequins are freely available for research.
Scientists at the Garvan Institute of Medical Research (Darlinghurst, Sydney, NSW, Australia) developed the new technology. “Human genome sequencing is transforming biomedical research and healthcare,” said Dr. Tim Mercer, who led the development of Sequins, “And as genome sequencing is being increasingly used to diagnose disease, it is more important than ever that researchers and clinicians understand the accuracy of the genomic data they are looking at.”
Dr. Mercer and his team came up with the idea of adding Sequins, small stretches of synthetic DNA, to a patient’s DNA sample during sequencing. These Sequins (or sequencing spike-ins) then act as internal standards, helping researchers analyze the large data files generated during genome sequencing. The technology is based on an intuitively simple concept: the notion of mirror image DNA. “Sequins are, essentially, mirror images of natural DNA sequences. Like us, the genome has a ‘handedness’, and just as our right hand differs from our left hand, sequins differ from natural genome sequences. So sequins behave just like natural genome sequences, but they can be easily recognized as synthetic,” said Dr. Mercer.
When added to a sequencing reaction, sequins provide internal controls with which to assess the sensitivity and accuracy of genome sequencing. “A whole series of steps, first in the lab and then on the computer, are required to sequence a person’s genome or the genes that are expressed in different cells. Sequins are with the person’s DNA every step of the way: responding just as real DNA does at each step, yet unmistakably different from that real DNA. This allows a scientist to assess, and optimize, these different steps.”
Because sequins are added to each individual sample, they can provide a sample-by-sample assessment – something that has not previously been possible. “Sequins are the first technology to allow diagnostic statistics to be applied to each individual genome sequencing test,” said Dr. Mercer, “and we anticipate that their use will improve the reliability and sensitivity of genetic disease diagnosis.”
Cancer diagnosis is one area in which using Sequins should lead to improvements. “Incorporating Sequins into clinical tests for cancer diagnosis will increase the reliability of an individual diagnostic readout, reducing incorrect diagnoses and giving clinicians greater confidence in deciding the best course of treatment for their patient,” said Dr. Mercer.
Using Sequins will also make it possible to directly compare genomic data from research institutes and sequencing centers worldwide. “Sequins bring DNA sequencing to clinical standard, and will be an essential platform for genomic research and medicine,” said co-author Prof. John Mattick, Garvan’s executive director, “This is another important step in advancing Garvan’s mission to bring genomics to the clinic.”
The potential applications of Sequins are many. Because all genomes, from bacteria to human, have handedness, sequins can be similarly designed for any organism, or for almost any next-generation sequencing (NGS) application.
The Sequins technology is described in two linked studies, by Hardwick SA et al and by Deveson IW et al, both published August 8, 2016, in the journal Nature Methods.
Related Links:
Garvan Institute of Medical Research
Scientists at the Garvan Institute of Medical Research (Darlinghurst, Sydney, NSW, Australia) developed the new technology. “Human genome sequencing is transforming biomedical research and healthcare,” said Dr. Tim Mercer, who led the development of Sequins, “And as genome sequencing is being increasingly used to diagnose disease, it is more important than ever that researchers and clinicians understand the accuracy of the genomic data they are looking at.”
Dr. Mercer and his team came up with the idea of adding Sequins, small stretches of synthetic DNA, to a patient’s DNA sample during sequencing. These Sequins (or sequencing spike-ins) then act as internal standards, helping researchers analyze the large data files generated during genome sequencing. The technology is based on an intuitively simple concept: the notion of mirror image DNA. “Sequins are, essentially, mirror images of natural DNA sequences. Like us, the genome has a ‘handedness’, and just as our right hand differs from our left hand, sequins differ from natural genome sequences. So sequins behave just like natural genome sequences, but they can be easily recognized as synthetic,” said Dr. Mercer.
When added to a sequencing reaction, sequins provide internal controls with which to assess the sensitivity and accuracy of genome sequencing. “A whole series of steps, first in the lab and then on the computer, are required to sequence a person’s genome or the genes that are expressed in different cells. Sequins are with the person’s DNA every step of the way: responding just as real DNA does at each step, yet unmistakably different from that real DNA. This allows a scientist to assess, and optimize, these different steps.”
Because sequins are added to each individual sample, they can provide a sample-by-sample assessment – something that has not previously been possible. “Sequins are the first technology to allow diagnostic statistics to be applied to each individual genome sequencing test,” said Dr. Mercer, “and we anticipate that their use will improve the reliability and sensitivity of genetic disease diagnosis.”
Cancer diagnosis is one area in which using Sequins should lead to improvements. “Incorporating Sequins into clinical tests for cancer diagnosis will increase the reliability of an individual diagnostic readout, reducing incorrect diagnoses and giving clinicians greater confidence in deciding the best course of treatment for their patient,” said Dr. Mercer.
Using Sequins will also make it possible to directly compare genomic data from research institutes and sequencing centers worldwide. “Sequins bring DNA sequencing to clinical standard, and will be an essential platform for genomic research and medicine,” said co-author Prof. John Mattick, Garvan’s executive director, “This is another important step in advancing Garvan’s mission to bring genomics to the clinic.”
The potential applications of Sequins are many. Because all genomes, from bacteria to human, have handedness, sequins can be similarly designed for any organism, or for almost any next-generation sequencing (NGS) application.
The Sequins technology is described in two linked studies, by Hardwick SA et al and by Deveson IW et al, both published August 8, 2016, in the journal Nature Methods.
Related Links:
Garvan Institute of Medical Research
Latest Molecular Diagnostics News
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
- New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
- Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more