LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Direct Molecular Detection of Bloodstream Infection Evaluated

By LabMedica International staff writers
Posted on 02 Aug 2016
Image: The SepsiTest allows the reliable molecular analysis of whole blood samples for bacteremia and fungemia (Photo courtesy of Molzym).
Image: The SepsiTest allows the reliable molecular analysis of whole blood samples for bacteremia and fungemia (Photo courtesy of Molzym).
Blood culture is the current gold standard for detecting bacteria in blood, requires at least 24 to 48 hours and has limited sensitivity if obtained during antibiotic treatment of the patient. Severe sepsis is sepsis associated with organ dysfunction, hypoperfusion, or hypotension.

Rapid diagnosis and appropriate antimicrobial therapy are of major importance to decrease morbidity and mortality in patients with blood stream infections (BSI). Sepsis, severe sepsis and septic shock are associated with high mortality, ranging from 20% to 60 % depending on severity and underlying disease. Septic shock is the persistence of hypotension and perfusion abnormalities despite adequate resuscitation therapy.

Scientists led by those at VU University Medical Center (Amsterdam, The Netherlands) carried out a prospective multicenter study to clinically evaluate the application of a commercial universal molecular test directly on whole blood. In total 236 samples from 166 patients with suspected sepsis were included in the study. The molecular test results were compared to blood culture, the current gold standard for detecting BSI. Because blood cultures can give false-negative results, the team performed an additional analysis to interpret the likelihood of bloodstream infection by using an evaluation based on clinical diagnosis, other diagnostic tests and laboratory parameters.

Fresh EDTA blood was divided into two aliquots of 1 mL and processed according to the SepsiTest protocol (PCR-ST, Molzym, Bremen, Germany). The SepsiTest assay selectively degrades human DNA, before isolation of the microbial DNA. SepsiTest can provide a positive or negative result within four hours and needs additional sequencing to identify the microorganism, which takes another two to three hours if sequencing is available in the laboratory.

The clinical interpretation of results defined the detected organism to be contaminants in 22/43 positive blood cultures (51.2 %) and 21/47 positive PCR-ST results (44.7 %). Excluding these contaminants resulted in an overall sensitivity and specificity of the PCR-ST of 66.7% and 94.4%, respectively. Of the 36 clinically relevant samples, 11 BSI were detected with both techniques, 15 BSI were detected with PCR-ST only and 10 with blood culture only. Therefore, in this study, SepsiTest detected an additional 71 % BSI compared to blood culture alone. The majority of detected microorganisms were staphylococci in both blood culture and PCR-ST.

The authors concluded that overall, PCR-ST results may influence the administration of adequate antimicrobial therapy and diminish patient’s morbidity and mortality. Although the SepsiTest PCR directly on blood is a promising technique, the input volume of blood should be increased to lower sampling error, and a faster procedure to identify the microorganism is of importance. The study was published on June 30, 2016, in the journal BMC Infectious Diseases.

Related Links:
VU University Medical Center
Molzym

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more