Loss of MicroRNA Induces Pro-Metastatic Changes in Pancreatic Cancer Cells
|
By LabMedica International staff writers Posted on 14 Jun 2016 |

Image: A pancreatic cancer cell. The nucleus is stained blue, while the fibers of the cytoskeleton are labelled with a red fluorescent dye (Photo courtesy of Dr. Nathalie Giese, Chirurgische Universitätsklinik Heidelberg, Germany).
Reduced activity of a specific microRNA (miRNA) is apparent in chronically inflamed pancreatic tissue and in early stages of pancreatic cancer (pancreatic ductal adenocarcinoma or PDAC) even before tumor formation.
PDAC is characterized by very early metastasis, which has led some researchers to postulate that metastasis-associated changes may occur prior to actual tumor formation. To confirm this hypothesis investigators at the German Cancer Research Center (Heidelberg, Germany) analyzed levels of miRNAs known to be linked to PDAC.
MicroRNAs are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
The investigators reported in the May 23, 2016, online edition of the journal Cancer Research that they had identified the microRNA miR-192 as an epigenetically regulated suppressor gene with predictive value in PDAC. Levels of miR-192 were downregulated by promoter methylation in both PDAC and chronic pancreatitis (CP), a risk factor that leads to a 15-fold increase in the likelihood of contracting pancreatic cancer.
Functional studies in vitro and in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial-mesenchymal transition (EMT).
Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1, which encodes the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. These results suggested that miR-192 downregulation established an invasive capacity in these pancreatic cells even before they transformed into cancer cells.
"We think that the cells often already have metastatic capacity before even transforming into cancer cells," said senior author Dr. Jörg Hoheisel, head of the division of functional genome analysis at the German Cancer Research Center. "To check this hypothesis, we searched the tumor cells for molecular changes that are indicative of the tendency to spread early. Our interpretation of these results is that epigenetic changes that occur already in inflamed pancreatic tissue lead to reduced production of miR-192. This means that the cells acquire the capacity of invasion and metastasis, which initially has no consequences. The actual transformation into cancer cells is caused by other, unrelated factors and can occur later. The result is cancer cells that are capable, from the very start, to invade surrounding tissue and spread metastases."
Related Links:
German Cancer Research Center
PDAC is characterized by very early metastasis, which has led some researchers to postulate that metastasis-associated changes may occur prior to actual tumor formation. To confirm this hypothesis investigators at the German Cancer Research Center (Heidelberg, Germany) analyzed levels of miRNAs known to be linked to PDAC.
MicroRNAs are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
The investigators reported in the May 23, 2016, online edition of the journal Cancer Research that they had identified the microRNA miR-192 as an epigenetically regulated suppressor gene with predictive value in PDAC. Levels of miR-192 were downregulated by promoter methylation in both PDAC and chronic pancreatitis (CP), a risk factor that leads to a 15-fold increase in the likelihood of contracting pancreatic cancer.
Functional studies in vitro and in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial-mesenchymal transition (EMT).
Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1, which encodes the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. These results suggested that miR-192 downregulation established an invasive capacity in these pancreatic cells even before they transformed into cancer cells.
"We think that the cells often already have metastatic capacity before even transforming into cancer cells," said senior author Dr. Jörg Hoheisel, head of the division of functional genome analysis at the German Cancer Research Center. "To check this hypothesis, we searched the tumor cells for molecular changes that are indicative of the tendency to spread early. Our interpretation of these results is that epigenetic changes that occur already in inflamed pancreatic tissue lead to reduced production of miR-192. This means that the cells acquire the capacity of invasion and metastasis, which initially has no consequences. The actual transformation into cancer cells is caused by other, unrelated factors and can occur later. The result is cancer cells that are capable, from the very start, to invade surrounding tissue and spread metastases."
Related Links:
German Cancer Research Center
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channelDNA-Powered Test Accurately Detects E. Coli Lookalike Bacteria
Accurately diagnosing bacterial infections remains a major clinical challenge, particularly when genetically similar species mimic one another. Such is the case with Escherichia marmotae, a bacterium often mistaken for E. coli in lab tests, leading to misdiagnosis and use of broad-spectrum antibiotics. Now, a new DNA-powered... Read moreWorld’s Fastest DNA Sequencing Technique to Revolutionize NICU Genomic Care
When critically ill newborns enter the NICU, every minute matters — yet traditional genetic testing can take several days to deliver results. Many infants with rare genetic disorders deteriorate quickly... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
AI Improves Cervical Cancer Screening in Low-Resource Settings
Access to cervical cancer screening in low- and middle-income countries remains limited, leaving many women without early detection for this life-threatening disease. The lack of access to laboratories,... Read more
New Multi-Omics Tool Illuminates Cancer Progression
Tracking how cancers evolve into more aggressive and therapy-resistant forms has long been a challenge for researchers. Many current tools can only capture limited genetic information from tumor samples,... Read moreTechnology
view channel
Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read more
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







