We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New X-Ray Crystallography Study Confirms Structure of Empty Cowpea mosaic virus Particles

By LabMedica International staff writers
Posted on 10 Apr 2016
Image: A study shows that a hollowed-out version of Cowpea mosaic virus could be useful in human therapies (Photo courtesy of the Scripps Research Institute).
Image: A study shows that a hollowed-out version of Cowpea mosaic virus could be useful in human therapies (Photo courtesy of the Scripps Research Institute).
An X-ray crystallography study confirmed that empty Cowpea mosaic virus (CPMV) particles (eVLPs) were structurally similar to the intact virus and showed that they could be used for drug transport and other biomedical applications.

CPMV is a plant virus of the Comovirus group. Its genome consists of two molecules of positive-sense RNA, which are separately encapsulated. The virus particles are 28 nanometers in diameter and contain 60 copies each of a Large (L) and Small (S) coat protein. The structure is well characterized to atomic resolution, and the viral particles are thermostable. CPMV displays a number of features that can be exploited for nanoscale biomaterial fabrication. Its genetic, biological, and physical properties are well characterized, and it can be isolated readily from plants. There are many stable mutants already prepared that allow specific modification of the capsid surface. It is possible to attach a number of different chemicals to the virus surface and to construct multilayer arrays of such nanoparticles on solid surfaces. This gives the natural or genetically engineered nanoparticles a range of properties which could be useful in nanotechnological applications such as biosensors, catalysis and nanoelectronic devices.

Empty CPMV particles (eVLPs) can be modified to entrap drugs or other molecules while the outside surface can be coated with peptides that direct the particles to a specific class of target cells.

Investigators at The Scripps Research Institute (La Jolla, CA, USA) reported in the March 24, 2016, online edition of the journal Structure that they had used X-ray crystallography at 2.3 angstrom resolution to determine the crystal structure of CPMV eVLPs and then compared it to previously reported cryo-electron microscopy (cryo-EM) reports of eVLPs and virion crystal structures.

The new study revealed that although the X-ray and cryo-EM structures of eVLPs were mostly similar, there existed significant differences at the C-terminus of the small (S) subunit. The intact C-terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions showed that the C-termini of S subunits underwent proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed.

"By studying the structure of the viral particles, we can get important information for transforming this plant virus into a useful therapeutic," said senior author Dr. Vijay Reddy, an associate professor at The Scripps Research Institute. "The eVLP is no longer a virus; it is just a protein capsule."

Related Links:

The Scripps Research Institute


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more