Molecular Mechanism Regulating Regeneration of Spinal Nerves Identified
By LabMedica International staff writers Posted on 29 Mar 2016 |

Image: A confocal micrograph of the lesion core following spinal cord injury. Nuclear EdU (red) shows the presence of newly differentiated cells which produce Schwann cell myelin (green). These peripheral-like Schwann cells remyelinate central axons in the injured spinal cord and are important for spontaneous repair and functional recovery after spinal cord injury (Photo courtesy of King\'s College London).
The protein neuregulin-1 was found to regulate the repair mechanism that attempts to restore lost myelin following spinal cord injury.
Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. However, this endogenous repair response is incomplete and may account for the chronic loss of function demonstrated by surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control mechanism, functional role, and origin of these central remyelinating Schwann cells are currently unknown.
The growth factor neuregulin-1 (Nrg1, encoded by the NRG1 gene) is a key signaling factor controlling myelination in the peripheral nervous system, via signaling through ErbB tyrosine kinase receptors. The neuregulins are a family of four structurally related proteins that are part of the EGF (epidermal growth factor) family of proteins, which have been shown to have diverse functions in the development of the nervous system.
Investigators at King's College London (United Kingdom) and the University of Oxford (United Kingdom) examined whether Nrg1 was required for Schwann cell-mediated remyelination of central dorsal column axons and whether removal of Nrg1 would influence the degree of spontaneous remyelination and functional recovery following spinal cord injury.
They reported in the March 17, 2016, online edition of the journal Brain that Nrg1 signaling mediated an endogenous regenerative event in which Schwann cells remyelinated denuded central axons after traumatic spinal cord injury and that Nrg1 was an important mediator of spontaneous functional repair after spinal cord injury. In mice lacking the NRG1 gene, spontaneous myelin repair was completely prevented and spinal nerve fibers remained demyelinated. Furthermore, mice without NRG1 showed worse outcomes after spinal cord injury compared to mice with the gene intact, particularly in walking, balance, and coordinated movements.
Senior author Dr. Elizabeth Bradbury, professor of regenerative medicine and neuroplasticity at King's College London, said, "Spinal cord injury could happen to anyone, at any time. In an instant your life could change and you could lose all feeling and function below the level of the injury. Existing treatments are largely ineffective, so there is a pressing need for new regenerative therapies to repair tissue damage and restore function after spinal cord injury."
"These new findings advance our understanding of the molecular mechanisms which may orchestrate the body's remarkable capacity for natural repair," said Dr. Bradbury.
"By enhancing this spontaneous response, we may be able to significantly improve spinal cord function after injury. Our research also has wider implications for other disorders of the central nervous system which share this demyelinating pathology, such as multiple sclerosis."
Related Links:
King's College London
University of Oxford
Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. However, this endogenous repair response is incomplete and may account for the chronic loss of function demonstrated by surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control mechanism, functional role, and origin of these central remyelinating Schwann cells are currently unknown.
The growth factor neuregulin-1 (Nrg1, encoded by the NRG1 gene) is a key signaling factor controlling myelination in the peripheral nervous system, via signaling through ErbB tyrosine kinase receptors. The neuregulins are a family of four structurally related proteins that are part of the EGF (epidermal growth factor) family of proteins, which have been shown to have diverse functions in the development of the nervous system.
Investigators at King's College London (United Kingdom) and the University of Oxford (United Kingdom) examined whether Nrg1 was required for Schwann cell-mediated remyelination of central dorsal column axons and whether removal of Nrg1 would influence the degree of spontaneous remyelination and functional recovery following spinal cord injury.
They reported in the March 17, 2016, online edition of the journal Brain that Nrg1 signaling mediated an endogenous regenerative event in which Schwann cells remyelinated denuded central axons after traumatic spinal cord injury and that Nrg1 was an important mediator of spontaneous functional repair after spinal cord injury. In mice lacking the NRG1 gene, spontaneous myelin repair was completely prevented and spinal nerve fibers remained demyelinated. Furthermore, mice without NRG1 showed worse outcomes after spinal cord injury compared to mice with the gene intact, particularly in walking, balance, and coordinated movements.
Senior author Dr. Elizabeth Bradbury, professor of regenerative medicine and neuroplasticity at King's College London, said, "Spinal cord injury could happen to anyone, at any time. In an instant your life could change and you could lose all feeling and function below the level of the injury. Existing treatments are largely ineffective, so there is a pressing need for new regenerative therapies to repair tissue damage and restore function after spinal cord injury."
"These new findings advance our understanding of the molecular mechanisms which may orchestrate the body's remarkable capacity for natural repair," said Dr. Bradbury.
"By enhancing this spontaneous response, we may be able to significantly improve spinal cord function after injury. Our research also has wider implications for other disorders of the central nervous system which share this demyelinating pathology, such as multiple sclerosis."
Related Links:
King's College London
University of Oxford
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read more
Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
HR+ (hormone receptor-positive) HER2- (human epidermal growth factor receptor 2-negative) breast cancer represents over 70% of all breast cancer cases and carries a significant risk of late recurrence.... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more