Whole-Exome Sequencing Identifies Rare Inherited Diseases
|
By LabMedica International staff writers Posted on 14 Mar 2016 |

Image: Schematics of workflow for whole-exome sequencing (Photo courtesy of Quest Diagnostics).
Whole-exome sequencing (WES) could serve as a viable diagnostic approach for identifying rare inherited diseases and providing a resolution for patients on a diagnostic odyssey, which are patients with a suspected genetic condition for whom previous standard genetic testing did not reveal a cause.
WES is a laboratory process that determines, all at once, the entire unique DNA sequence, that is the inherited genetic material of an organism's genome. WES provides patients with rare genetic conditions who have been evaluated by multiple providers over, sometimes, years, without a diagnosis, an opportunity to get answers.
Scientists at the Mayo Clinic (Rochester, MN, USA) received requests for patients on a diagnostic odyssey. Seven of the cases were deferred, and 75 cases were approved to proceed with WES. Individualized Medicine Clinic genomic counselors met with 71 patients; 51 patients submitted specimens for clinical WES testing and received the results. This study took place from September 30, 2012, to March 30, 2014, and ultimately, 15 patients or 29% resulted in a diagnosis based on WES findings.
Peripheral blood was collected and DNA isolated from the proband and his or her affected and unaffected relatives. Some cases warranted the collection of fibroblasts via skin biopsy that were cultured before DNA extraction. DNA samples were submitted to one of three next-generation sequencing laboratories: Medical Genetics Laboratories (Baylor College of Medicine, Houston, TX, USA), Ambry Genetics (Aliso Viejo, CA, USA), and GeneDx (Gaithersburg, MD, USA).
Most patients who received WES testing 43/51 (84%) had undergone previous genetic testing during their diagnostic odyssey. Testing consisted of 29 chromosomal microarrays, 20 karyotyping, 30 metabolic testing and 39 candidate gene testing. Of the patients receiving candidate gene testing (single-gene or small panels), 22 were tested for one to five genes, and 12 patients were tested for six to 15 genes. In addition, five patients were tested with one to three independent single-gene tests and one large gene panel totaling 55 to 452 total genes tested per patient.
There were a total of 29 deleterious or likely deleterious variants found in 17 (33%) of the 51 cases. Incidental findings, reported only for the proband, include two medically actionable variants in disease genes MutY DNA Glycosylase (MUTYH) and Desmocollin 2 (DSC2) unrelated to the clinical phenotype. Three patients were identified as carriers for the known genetic diseases, cystic fibrosis, G6PD, and Fanconi anemia type C. Nine autosomal dominant, seven autosomal recessive, and one somatic disorder was identified. Two patients were found to have both a dominant and a recessive disorder.
Konstantinos Lazaridis, MD, director of the Mayo Individualized Medicine Clinic and primary investigator of the study, said, “The significant diagnostic yield, moderate cost and notable health marketplace acceptance of whole-exome sequencing for clinical purposes, compared with conventional genetic testing, make it a rational diagnostic approach for patients on a diagnostic odyssey. The success rate of 29%, which is about twofold higher than conventional genetic evaluations for such patients, makes WES a reasonable diagnostic approach for patients on a diagnostic odyssey.” The study was published in the March 2016 issue of the Mayo Clinic Proceedings.
Related Links:
Mayo Clinic
Baylor Medical Genetics Laboratories
Ambry Genetics
WES is a laboratory process that determines, all at once, the entire unique DNA sequence, that is the inherited genetic material of an organism's genome. WES provides patients with rare genetic conditions who have been evaluated by multiple providers over, sometimes, years, without a diagnosis, an opportunity to get answers.
Scientists at the Mayo Clinic (Rochester, MN, USA) received requests for patients on a diagnostic odyssey. Seven of the cases were deferred, and 75 cases were approved to proceed with WES. Individualized Medicine Clinic genomic counselors met with 71 patients; 51 patients submitted specimens for clinical WES testing and received the results. This study took place from September 30, 2012, to March 30, 2014, and ultimately, 15 patients or 29% resulted in a diagnosis based on WES findings.
Peripheral blood was collected and DNA isolated from the proband and his or her affected and unaffected relatives. Some cases warranted the collection of fibroblasts via skin biopsy that were cultured before DNA extraction. DNA samples were submitted to one of three next-generation sequencing laboratories: Medical Genetics Laboratories (Baylor College of Medicine, Houston, TX, USA), Ambry Genetics (Aliso Viejo, CA, USA), and GeneDx (Gaithersburg, MD, USA).
Most patients who received WES testing 43/51 (84%) had undergone previous genetic testing during their diagnostic odyssey. Testing consisted of 29 chromosomal microarrays, 20 karyotyping, 30 metabolic testing and 39 candidate gene testing. Of the patients receiving candidate gene testing (single-gene or small panels), 22 were tested for one to five genes, and 12 patients were tested for six to 15 genes. In addition, five patients were tested with one to three independent single-gene tests and one large gene panel totaling 55 to 452 total genes tested per patient.
There were a total of 29 deleterious or likely deleterious variants found in 17 (33%) of the 51 cases. Incidental findings, reported only for the proband, include two medically actionable variants in disease genes MutY DNA Glycosylase (MUTYH) and Desmocollin 2 (DSC2) unrelated to the clinical phenotype. Three patients were identified as carriers for the known genetic diseases, cystic fibrosis, G6PD, and Fanconi anemia type C. Nine autosomal dominant, seven autosomal recessive, and one somatic disorder was identified. Two patients were found to have both a dominant and a recessive disorder.
Konstantinos Lazaridis, MD, director of the Mayo Individualized Medicine Clinic and primary investigator of the study, said, “The significant diagnostic yield, moderate cost and notable health marketplace acceptance of whole-exome sequencing for clinical purposes, compared with conventional genetic testing, make it a rational diagnostic approach for patients on a diagnostic odyssey. The success rate of 29%, which is about twofold higher than conventional genetic evaluations for such patients, makes WES a reasonable diagnostic approach for patients on a diagnostic odyssey.” The study was published in the March 2016 issue of the Mayo Clinic Proceedings.
Related Links:
Mayo Clinic
Baylor Medical Genetics Laboratories
Ambry Genetics
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







