LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Experimental Drug Blocks Leukemia Growth in Mouse Model System

By LabMedica International staff writers
Posted on 14 Mar 2016
Image: Mouse spleens that were infiltrated by TAL-1-positive T-ALL leukemia cells taken from human patients, with leukemia cells shown in brown. Images on the right are from mice treated with GSK-J4, while the mice on the left were not treated with the compound (Photo courtesy of Dr. Aissa Benyoucef, Ottawa Hospital Research Institute).
Image: Mouse spleens that were infiltrated by TAL-1-positive T-ALL leukemia cells taken from human patients, with leukemia cells shown in brown. Images on the right are from mice treated with GSK-J4, while the mice on the left were not treated with the compound (Photo courtesy of Dr. Aissa Benyoucef, Ottawa Hospital Research Institute).
An experimental drug that blocks the activity of a specific histone demethylase enzyme was found to cure the TAL-1 form of acute T-cell lymphoblastic leukemia (T-ALL) in a mouse model system.

T-ALL afflicts mostly children, with more than 500 new pediatric diagnoses in the United States annually. The leukemia, which occurs in a child's developing T-cells, is fatal in about 1 in 4 cases. In the remaining patients with the disease, T-ALL requires intense levels of chemotherapy or radiation.

Investigators at the Ottawa Hospital Research Institute (Canada; www.ohri.ca) concentrated their efforts on a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL-1.

They reported in the March 1, 2016, issue of the journal Genes & Development that this subtype of T-ALL was uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase enzyme UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome).

The investigators used a model system in which human T-ALL cells were transplanted into mice. Some of the animals were treated with the experimental drug GSK-J4, which is a potent cell-permeable inhibitor of the histone H3 lysine 27 (H3K27) demethylase JMJD3, an essential component of regulatory transcriptional chromatin complexes. They found that this drug blocked UTX activity and stopped the growth of TAL-1 type cancer cells. After three weeks of treatment the number of cancer cells in the bone marrow decreased by 80%, and the drug did not seem to harm normal cells or have any short-term effects on other organs of the body. The treatment was specific for the TAL-1 subtype, and did not prevent growth of any other types of T-ALL.

"It is very exciting because this is the first time anyone has found a potential personalized treatment for this aggressive disease," said senior author Dr. Marjorie Brand, a senior scientist at the Ottawa Hospital Research Institute. "Unlike current therapies, ours targets the offending gene without harming the rest of the body. Learning how a disease works at a molecular level needs to happen before any kind of successful drug can be developed. You need to do laboratory studies to find the right treatment and prove it works."

Related Links:

Ottawa Hospital Research Institute


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Laboratory Software
ArtelWare

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more