LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Increases Accuracy in Prenatal Testing

By LabMedica International staff writers
Posted on 22 Nov 2015
Image: The Qubit Fluorometer accurately detects and quantifies very low concentrations of DNA, RNA, and protein (Photo courtesy of Great Lakes Genomics Center).
Image: The Qubit Fluorometer accurately detects and quantifies very low concentrations of DNA, RNA, and protein (Photo courtesy of Great Lakes Genomics Center).
A simple, accurate and low risk blood test can detect fetal blood group, sex, and genetic conditions in unborn babies and the DNA test is inexpensive and is noninvasive, as opposed to the traditional amniocentesis test that involves a needle and carries a minor risk of miscarriage.

Laboratory methods have been evaluated for noninvasive genotyping of fetal RHD (Rh blood group, D antigen) that can prevent the unnecessary administration of prophylactic anti-D to women carrying RHD-negative fetuses. The test developed can be carried out on mothers at risk of X-linked genetic recessive diseases including hemophilia and Duchenne muscular dystrophy and mothers at risk of hemolytic disease of the new-born.

Scientists at the University of Plymouth (UK) recruited RHD-negative pregnant women (28 to 30 weeks' gestation), all of whom met inclusion criteria, from November 2013 to September 2014. Twenty-two maternal peripheral blood samples were collected in Ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 1,600×g for 10 minutes at room temperature (samples 1–22). The plasma was carefully removed and transferred to a 15-mL tube. The plasma was then re-centrifuged at 16,000×g for 10 minutes.

Twenty-four maternal blood samples collected in Streck Cell-Free DNA blood collection tubes (Streck BCTs; La Vista, NE, USA) were centrifuged at 1,600×g for 15 minutes at room temperature (samples 23–46). Plasma was carefully removed, transferred to a 50-mL tube, and re-centrifuged at 2,500×g for 10 minutes. DNA was extracted from two 1-mL aliquots of plasma and quantified samples on the Qubit 2.0 Fluorometer (Thermo Fisher; Waltham, MA, USA). Using Y-specific and RHD-specific targets, the team investigated variation in the cell-free fetal DNA (cffDNA) fraction and determined the sensitivity achieved for optimal and suboptimal samples with a novel Droplet Digital polymerase chain reaction (ddPCR, Bio-Rad Laboratories; Hercules CA, USA) platform compared with real-time quantitative PCR (qPCR).

The cffDNA fraction was significantly larger for samples collected in Streck BCTs compared with samples collected in EDTA tubes. In samples expressing optimal cffDNA fractions greater than 4%, both qPCR and ddPCR showed 100% sensitivity for the testis-specific protein, Y-linked 1(TSPY1) and RHD exon 7 (RHD7) assays. Although ddPCR also had 100% sensitivity for RHD exon 5 (RHD5), qPCR had reduced sensitivity (83%) for this target. For samples expressing suboptimal cffDNA fractions, less than 2%, ddPCR achieved 100% sensitivity for all assays, whereas qPCR achieved 100% sensitivity only for the TSPY1 multicopy target assay.

Neil D. Avent, PhD, a professor and lead author of the study, said, “Although fetal blood grouping and sexing using maternal blood has been done for over a decade, this study proves a much more accurate and sensitive method of detecting fetal DNA. This offers great opportunities to detect other conditions using this technique, but is much cheaper than current noninvasive methods. The end is now in sight for the invasive techniques of amniocentesis and chorionic villus sampling.” The study was published in the November 2015 issue of the journal Clinical Chemistry.

Related Links:

University of Plymouth 
Streck
Thermo Fisher



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Homocysteine Quality Control
Liquichek Homocysteine Control

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more