We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Diagnostic Technology Rapidly Identifies Cancer Source

By LabMedica International staff writers
Posted on 28 Oct 2015
Image: The HiSeq 2500 ultra-high-throughput sequencing system (Photo courtesy of Illumina).
Image: The HiSeq 2500 ultra-high-throughput sequencing system (Photo courtesy of Illumina).
A substantial proportion of cancer cases present with a metastatic tumor and require further testing to determine the primary site; many of these are never fully diagnosed and remain cancer of unknown primary origin (CUP).

A diagnostic method for determining the primary site of the cancer combines genetics and computer science, and can analyze a biopsy from a metastasis, and on this basis provide a number of possible scenarios for where the cancer may have developed and indicate the probability of it being correct.

Scientists at the Technical University of Denmark (Lyngby, Denmark) in collaboration with their international colleagues, used the Catalogue of Somatic Mutations in Cancer (COSMIC) version 68 Whole Genomes database to identify tumor specimens with genome-wide or exome-wide somatic point mutation data, and focused on solid non-central nervous system (CNS) tumors of the ten primary sites for which at least 200 unique specimens were available. The newly developed method, which the team is calling TumorTracer, is based on analyses of DNA mutations in cancer tissue samples from patients with metastasized cancer.

The data set consisted of 7,769 specimens from 28 different primary sites. Some samples were paired-end multiplex sequenced on the HiSeq 2500 (Illumina, San Diego, CA, USA). The pattern of mutations was analyzed in a computer program which had been trained to find possible primary tumor localizations. The method has been tested on many thousands of samples where the primary tumor was already identified, and it has proven extremely precise. The next step will be to test the method on patients with unknown primary tumors. In recent years, scientists have discovered several ways of using genome sequencing of tumors to predict whether an individual cancer patient will benefit from a specific type of medicine.

Aron Charles Eklund, PhD, a professor and senior author of study, said, “We are very pleased that we can now use the same sequencing data together with our new algorithms to provide a much faster diagnosis for cancer cases that are difficult to diagnose, and to provide a useful diagnosis in cases which are currently impossible to diagnose. At the moment, it takes scientist two days to obtain a biopsy result, but we expect this time to be reduced as it becomes possible to do the sequencing increasingly faster, and it will be straightforward to integrate the method with the methods already being used by doctors.” The study was published on October 1, 2015, in the journal BMC Medical Genomics.

Related Links:

Technical University of Denmark


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more