We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Ancient Viruses Built from Computer Models May Improve Gene Therapy Delivery

By LabMedica International staff writers
Posted on 11 Aug 2015
Image: Artist\'s conception of an adeno-associated viral capsid in formation by ancestral sequence reconstruction (Photo courtesy of Dr. Eric Zinn, Harvard University Medical School).
Image: Artist\'s conception of an adeno-associated viral capsid in formation by ancestral sequence reconstruction (Photo courtesy of Dr. Eric Zinn, Harvard University Medical School).
An advanced computer modeling strategy was used to design ancient forms of adeno-associated viruses (AAVs), which were then synthesized in the laboratory for use as potential delivery vectors for gene therapy.

AAV vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation of vectors—including rejection by the patient's immune system—often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle.

To bypass these limitations investigators at Harvard University Medical School (Boston, MA, USA) built computer models of the AAC viral capsid using ancestral sequence reconstruction from inferred evolutionary intermediates. Computer model-derived sequences were synthesized in the laboratory and characterized for biological properties relevant to clinical applications.

Results published in the July 30, 2015, online edition of the journal Cell Reports described the generation of nine functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8, and 9, as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina.

"The vectors developed and characterized in this study demonstrate unique and potent biology that justify their consideration for gene therapy applications," said senior author Dr. Luk H. Vandenberghe, professor of ophthalmology at Harvard University Medical School. "We believe our findings will teach us how complex biological structures, such as AAVs (adeno-associated viruses), are built. From this knowledge, we hope to design next-generation viruses for use as vectors in gene therapy."

Related Links:

Harvard University Medical School


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Clinical Chemistry System
P780

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more