Molecular Classification Improves Method to Diagnose Gliomas
|
By LabMedica International staff writers Posted on 28 Jun 2015 |

Image: Histopathology of an oligodendroglioma showing the characteristic branching, small, chicken wire-like blood vessels and fried egg-like cells, with clear cytoplasm and well-defined cell borders (Photo courtesy of Nephron).
The molecular makeup of brain tumors can be used to sort patients with gliomas into five categories, each with different clinical features and outcomes.
The molecular finding could change the methods that physicians rely on to determine prognosis and treatment options as previously they relied on how patients' tumors look under the microscope.
A large team of scientists led by those at the Mayo Clinic (Rochester, MN, USA) studied a total of 317 cases and 789 controls from the Mayo Clinic series, which were used as the discovery set in this study; also 351 cases and as many as 4,504 controls depending on the Single Nucleotide Polymorphism (SNP) being analyzed from the University of California, San Francisco (UCSF; CA, USA) Adult Glioma Study were used as the first replication set. The team explored whether three tumor markers could be used to define molecular groups that better inform glioma treatment.
The investigators scored tumors as negative or positive for 1p/19q codeletion, isocitrate dehydrogenase (IDH) mutation and telomerase reverse transcriptase (TERT) mutation in 317 gliomas from the Mayo Clinic Case-Control Study. The scientists then compared patient characteristics among the top five molecular groups (triple-positive, TERT- and IDH-mutated, IDH-mutated-only, TERT-mutated-only, and triple-negative) and found that the patients within each group had similar age of onset and overall survival.
The results of the study will enable clinicians to make better predictions about which specific treatment course is necessary for each individual patient. For example, the team found that the molecular classification can identify patients with histologically defined lower-grade tumors who have less favorable outcomes and deserve more aggressive therapy.
Robert B. Jenkins, MD, PhD, a professor and senior author of the study said, “These molecular groups could represent distinct types of gliomas, with different origins and paths to progression. Now that we know more about the germline alterations that predispose to these tumors and the ensemble of mutations that are associated with each type of glioma, we can start thinking about building models of the disease that can help us find new therapies to precisely target specific types of glioma.”
Daniel H. Lachance, MD, a neuro oncologist at Mayo Clinic, and lead author said, “Our findings are going to weigh heavily on the future classification of brain tumors. The time of classifying these tumors solely according to histology as astrocytoma, oligodendroglioma or mixed oligoastrocytoma could be a thing of the past. This molecular data helps us better classify glioma patients, so we can begin to understand who needs to be treated more aggressively and who might be able to avoid unnecessary therapies.” The study was published on June 10, 2015, in the New England Journal of Medicine (NEJM).
Related Links:
Mayo Clinic
University of California, San Francisco
The molecular finding could change the methods that physicians rely on to determine prognosis and treatment options as previously they relied on how patients' tumors look under the microscope.
A large team of scientists led by those at the Mayo Clinic (Rochester, MN, USA) studied a total of 317 cases and 789 controls from the Mayo Clinic series, which were used as the discovery set in this study; also 351 cases and as many as 4,504 controls depending on the Single Nucleotide Polymorphism (SNP) being analyzed from the University of California, San Francisco (UCSF; CA, USA) Adult Glioma Study were used as the first replication set. The team explored whether three tumor markers could be used to define molecular groups that better inform glioma treatment.
The investigators scored tumors as negative or positive for 1p/19q codeletion, isocitrate dehydrogenase (IDH) mutation and telomerase reverse transcriptase (TERT) mutation in 317 gliomas from the Mayo Clinic Case-Control Study. The scientists then compared patient characteristics among the top five molecular groups (triple-positive, TERT- and IDH-mutated, IDH-mutated-only, TERT-mutated-only, and triple-negative) and found that the patients within each group had similar age of onset and overall survival.
The results of the study will enable clinicians to make better predictions about which specific treatment course is necessary for each individual patient. For example, the team found that the molecular classification can identify patients with histologically defined lower-grade tumors who have less favorable outcomes and deserve more aggressive therapy.
Robert B. Jenkins, MD, PhD, a professor and senior author of the study said, “These molecular groups could represent distinct types of gliomas, with different origins and paths to progression. Now that we know more about the germline alterations that predispose to these tumors and the ensemble of mutations that are associated with each type of glioma, we can start thinking about building models of the disease that can help us find new therapies to precisely target specific types of glioma.”
Daniel H. Lachance, MD, a neuro oncologist at Mayo Clinic, and lead author said, “Our findings are going to weigh heavily on the future classification of brain tumors. The time of classifying these tumors solely according to histology as astrocytoma, oligodendroglioma or mixed oligoastrocytoma could be a thing of the past. This molecular data helps us better classify glioma patients, so we can begin to understand who needs to be treated more aggressively and who might be able to avoid unnecessary therapies.” The study was published on June 10, 2015, in the New England Journal of Medicine (NEJM).
Related Links:
Mayo Clinic
University of California, San Francisco
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







