Molecular Urine Test Identifies Lung Carcinoma Mutations
|
By LabMedica International staff writers Posted on 20 May 2015 |

Image: Droplet digital polymerase chain reaction system (Photo courtesy of Bio-Rad).

Image: The MiSeq table top sequencer (Photo courtesy of Konrad Förstner).
The monitoring of circulating tumor DNA (ctDNA) is a promising technique that may provide clinicians with a faster, cheaper and less invasive way to evaluate the clinical status and response to therapy of cancer patients.
Disease progression in patients with metastatic non-small-cell lung cancer (NSCLC) is often heralded by the acquisition of epidermal growth factor receptor (EGFR) T790M resistance mutation following treatment with anti-EGFR inhibitors.
Scientists at Moores Cancer Center (La Jolla, CA, USA) took urine samples from patients with metastatic NSCLC who progressed on erlotinib treatment and ctDNA was extracted by a method that preferentially isolates short, fragmented ctDNA. Droplet digital polymerase chain reaction system (Bio-Rad; Hercules, CA, USA) was used to quantify the ctDNA and yielded an average of total amplifiable ctDNA per sample of 0.4 µg (range, 0.04 µg to 2.4 µg). Spiked cell lines were used for analytical characterization and demonstrated that the EGFR T790M assay had a lower limit of detection of two copies within a background of 60 ng of wild-type DNA, yielding an analytical sensitivity of 0.01%. EGFR status was analyzed using a PCR method that amplifies short target DNA fragments using kinetically-favorable binding conditions for a wild type blocking oligonucleotide, followed by massively parallel deep sequencing using a MiSeq desktop sequencer (Illumina; San Diego CA, USA).
EGFR T790M mutation in urine was detected in 15 of 22 (68%) of patients receiving anti-EGFR treatment until progression. Urine EGFR T790M mutation was detected in 10 out of 10 tissue-positive patients, giving 100% concordance. Urine ctDNA testing identified five additional patients who may be eligible for treatment with anti-T790M drugs, three of whom were tissue negative. The investigators showed that EGFR T790M mutation can be detected in urinary ctDNA up to three months before radiographic progression on first-line anti-EGFR tyrosine kinase inhibitor (TKI). When T790M positive patients were treated with third generation anti-EGFR TKIs, a decrease in ctDNA T790M load was observed as early as four hours after therapy on first day of treatment. The initial decrease in urinary T790M was followed by a spike in T790M during the first week of therapy.
Hatim Husain, MD, the lead author of the study and his colleagues concluded that this ctDNA assay for multiple genes via next-generation sequencing (NGS) might become a "liquid biopsy" that could serve as an alternative to invasive tissue biopsy. EGFR T790M mutation in urine was detected months before radiographic detection, and furthermore, urine ctDNA testing identified tissue negative patients who may be eligible for treatment with third generation anti-EGFR TKIs and monitoring of urinary T790M dynamics may predict clinical benefit or initial tumour burden. The study was presented at the EUROPEAN Lung Cancer Conference held April 15–18, 2015, in Geneva (Switzerland).
Related Links:
Moores Cancer Center
Bio-Rad
Illumina
Disease progression in patients with metastatic non-small-cell lung cancer (NSCLC) is often heralded by the acquisition of epidermal growth factor receptor (EGFR) T790M resistance mutation following treatment with anti-EGFR inhibitors.
Scientists at Moores Cancer Center (La Jolla, CA, USA) took urine samples from patients with metastatic NSCLC who progressed on erlotinib treatment and ctDNA was extracted by a method that preferentially isolates short, fragmented ctDNA. Droplet digital polymerase chain reaction system (Bio-Rad; Hercules, CA, USA) was used to quantify the ctDNA and yielded an average of total amplifiable ctDNA per sample of 0.4 µg (range, 0.04 µg to 2.4 µg). Spiked cell lines were used for analytical characterization and demonstrated that the EGFR T790M assay had a lower limit of detection of two copies within a background of 60 ng of wild-type DNA, yielding an analytical sensitivity of 0.01%. EGFR status was analyzed using a PCR method that amplifies short target DNA fragments using kinetically-favorable binding conditions for a wild type blocking oligonucleotide, followed by massively parallel deep sequencing using a MiSeq desktop sequencer (Illumina; San Diego CA, USA).
EGFR T790M mutation in urine was detected in 15 of 22 (68%) of patients receiving anti-EGFR treatment until progression. Urine EGFR T790M mutation was detected in 10 out of 10 tissue-positive patients, giving 100% concordance. Urine ctDNA testing identified five additional patients who may be eligible for treatment with anti-T790M drugs, three of whom were tissue negative. The investigators showed that EGFR T790M mutation can be detected in urinary ctDNA up to three months before radiographic progression on first-line anti-EGFR tyrosine kinase inhibitor (TKI). When T790M positive patients were treated with third generation anti-EGFR TKIs, a decrease in ctDNA T790M load was observed as early as four hours after therapy on first day of treatment. The initial decrease in urinary T790M was followed by a spike in T790M during the first week of therapy.
Hatim Husain, MD, the lead author of the study and his colleagues concluded that this ctDNA assay for multiple genes via next-generation sequencing (NGS) might become a "liquid biopsy" that could serve as an alternative to invasive tissue biopsy. EGFR T790M mutation in urine was detected months before radiographic detection, and furthermore, urine ctDNA testing identified tissue negative patients who may be eligible for treatment with third generation anti-EGFR TKIs and monitoring of urinary T790M dynamics may predict clinical benefit or initial tumour burden. The study was presented at the EUROPEAN Lung Cancer Conference held April 15–18, 2015, in Geneva (Switzerland).
Related Links:
Moores Cancer Center
Bio-Rad
Illumina
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







