LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel X-Linked Intellectual Disability Genes Identified

By LabMedica International staff writers
Posted on 24 Feb 2015
Image: Human males have a single copy of the X-chromosome (Photo courtesy of the University of North Carolina).
Image: Human males have a single copy of the X-chromosome (Photo courtesy of the University of North Carolina).
A novel group of genes on the X-chromosome that when mutated lead to the mental disorder X-linked intellectual disability (XLID) have been added to list of more than a 100 such genes that had been identified previously.

XLID is a generalized neurodevelopmental disorder characterized by significantly impaired intellectual and adaptive functioning. It is defined by an IQ score below 70 in addition to deficits in two or more adaptive behaviors that affect everyday general living. The syndrome is caused by mutations on the X-chromosome. Since males have only one X-chromosome and the syndrome is passed on in a recessive manner, the disorder mainly occurs in boys. Over the past 20 years more than 100 X-chromosome genes linked to XLID have been found. Nonetheless, intellectual disabilities that map to the X-chromosome remain unresolved in a large number of families, which suggests that more XLID genes or loci are yet to be identified.

To identify more XLID-linked genes investigators at the Max Planck Institute for Molecular Genetics (Berlin, Germany) employed massively parallel sequencing of all X-chromosome exons in the index males of 405 families with XLID of unknown origin. In total, 745 X-chromosomal genes were screened.

Results revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, the investigators detected likely causative protein truncating and missense variants in seven novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM, and USP27X) and potentially deleterious variants in two novel candidate XLID genes (CDK16 and TAF1). Furthermore, they showed that the CLCN4 and CNKSR2 variants impaired protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from mice lacking CLCN4 or after mRNA knock-down.

"In addition to known disease-related genes, we have discovered seven novel genes as the cause of X-linked intellectual disability and analyzed what signaling pathways in the cells each protein is involved in," said senior author Dr. Vera Kalscheuer, professor of human molecular genetics at the Max Planck Institute for Molecular Genetics. "The clinical presentation and severity of the disorder depend on the responsible gene and the nature of the mutation."

The study was published in the February 3, 2015, online edition of the journal Molecular Psychiatry.

Related Links:

Max Planck Institute for Molecular Genetics


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Automatic Hematology Analyzer
DH-800 Series

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more