We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Low Cost Platform for Studying Molecular Interactions Based on DNA Gel Electrophoresis

By LabMedica International staff writers
Posted on 18 Feb 2015
Print article
Image: Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules, and as sensitive, quantitative reporters of molecular association and dissociation. The figure depicts gel electrophoresis separation of linear and closed loop DNA strands (Photo courtesy of Harvard Medical School).
Image: Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules, and as sensitive, quantitative reporters of molecular association and dissociation. The figure depicts gel electrophoresis separation of linear and closed loop DNA strands (Photo courtesy of Harvard Medical School).
A novel platform for studying molecular interactions is based on the separation of linear and circular forms of DNA by gel electrophoresis.

Investigators at Harvard Medical School (Boston, MA, USA) devised a system that used "nanoswitches," strands of DNA onto which molecules of interest were strategically attached at various locations along the strand. Interactions between these molecules, such as binding of a drug compound to its intended target or binding of a protein to its receptor on a cell, caused the shape of the DNA strand to change from an open and linear shape to a closed loop. DNA that had morphed into a closed loop form was easily separated from linear DNA by gel electrophoresis.

The investigators demonstrated this low-cost, versatile, "lab-on-a-molecule" system by characterizing ten different interactions, including a complex four-body interaction with five discernible states. This study was published in the February 2015 issue of the journal Nature Methods.

"Bio–molecular interaction analysis, a cornerstone of biomedical research, is traditionally accomplished using equipment that can cost hundreds of thousands of dollars," said senior author Dr. Wesley P. Wong, assistant professor of biological chemistry and molecular pharmacology at Harvard Medical School. "Rather than develop a new instrument, we have created a nanoscale tool made from strands of DNA that can detect and report how molecules behave, enabling biological measurements to be made by almost anyone, using only common and inexpensive laboratory reagents."

Related Links:

Harvard Medical School


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.