LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cancer Cells with p53 Mutations Have Phosphatidylinositol Signaling Molecules with Shortened Lipid Acyl Chains

By LabMedica International staff writers
Posted on 13 Jan 2015
Image: Molecular structure of phosphatidylinositol (Photo courtesy of Wikimedia Commons).
Image: Molecular structure of phosphatidylinositol (Photo courtesy of Wikimedia Commons).
A recent study showed that cancer cells with mutations in the p53 gene were distinguished by reduced-length fatty acid moieties in their cell membranes.

Phosphatidylinositol phosphate (PIP) second messengers relay growth cues via the cell membrane through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In contrast to PIP inositol head-group phosphorylation, changes in phosphatidylinositol (PI) lipid acyl chains in cancer have remained ill-defined.

Investigators at Cold Spring Harbor Laboratory (NY, USA) applied a mass-spectrometry-based method capable of unbiased high-throughput identification to quantify cellular PI acyl chain composition. Using this approach, they found that PI lipid chains represented a cell-specific fingerprint that was unperturbed by serum-mediated signaling in contrast to the inositol head group. Mutation of p53 resulted in PIs containing fatty acid moieties reduced in length by from two to four carbon atoms.

"What we would like to find out now," said senior author Dr. Lloyd Trotman, an associate professor at Cold Spring Harbor Laboratory, "is whether the p53-induced changes in the PI molecule are important in either making or maintaining the cancer state. If so, then in addition to p53 mutations, there may be other ways for cancer cells to generate the same or related changes. We will be looking for this in tissue samples from cancer patients."

The study was published in the December 24, 2014, online edition of the journal Cell Reports.

Related Links:

Cold Spring Harbor Laboratory


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more