LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Uncovered Associated with Aggressive Breast Cancer

By LabMedica International staff writers
Posted on 14 Dec 2014
Image: Histopathology of triple negative breast cancer (Photo courtesy of Joe Segen).
Image: Histopathology of triple negative breast cancer (Photo courtesy of Joe Segen).
A biomarker has been identified that is strongly associated with triple negative breast cancer (TNBC), a highly aggressive carcinoma that often has early relapse and metastasis following chemotherapy.

TNBC is characterized by tumors that do not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER2), and represents the most aggressive subtype of breast cancer, with a high rate of relapse and no available therapeutic targets.

Scientists at the A*STAR Genome Institute (Singapore) used quantitative polymerase chain reaction (qPCR) and western blotting for micro ribonucleic acid (miRNA) profiling of breast cancer cells and quantitative real-time PCR for validation. Total RNAs were isolated and purified with the miRNeasy Mini Kit (Qiagen; Venlo, The Netherlands). The miRNA expression array hybridization was performed using the Human miRNA Microarray Kit V3 (Agilent, Santa Clara, CA, USA), and data analysis was performed. Immunohistochemistry was also implemented.

The team found that small RNA, often called microRNA, is lost in highly metastatic TNBC cells but not in luminal breast cancer. As a result, the gene RAS Protein Activator Like 2 (RASAL2), which is negatively regulated by this microRNA, is upregulated in a set of TNBC tumors. The study showed that TNBC patients whose tumors have high expression of RASAL2 tend to have a lower survival rate as compared to patients whose tumors have low levels of this gene. Additionally, the study showed that genetic knockdown of RASAL2 gene can lead to reduced metastasis in breast cancer mouse model.

Qiang Yu, PhD, a professor and project leader of the study, said, “Cancer is an extremely heterogeneous disease, where many molecular processes have gone wrong in their own ways. Rather than a tumor suppressor, we show here that RASAL2 actually acts as a cancer promoting molecule in TNBC. This reminds us that the same molecule can function very differently in different subtypes of cancers, a phenomenon which has often been seen before.” The study was published on November 10, 2014, in the Journal of Clinical Investigation.

Related Links:

A*STAR Genome Institute
Qiagen 
Agilent 


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
8-Channel Pipette
SAPPHIRE 20–300 µL

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more