We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

By LabMedica International staff writers
Posted on 14 Sep 2014
Print article
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the molecule microRNA193 (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the molecule microRNA193 (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment (Photo courtesy of UCLA - University of California, Los Angeles).
A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms of pulmonary arterial hypertension in a population of laboratory animals.

A pathogenic role for oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids has been well established in vascular diseases including pulmonary arterial hypertension. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the roles of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension have not been well established.

Investigators at the University of California, Los Angeles (USA) studied two different rodent models of pulmonary hypertension: a monocrotaline rat model and a hypoxia mouse model. In addition, they examined lung tissues and serum from human patients with pulmonary arterial hypertension.

Results published in the August 26, 2014, issue of the journal Circulation revealed that plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in the rodents with pulmonary hypertension. 4F treatment reduced these levels and alleviated preexisting pulmonary hypertension in both rodent models.

MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly down regulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with pulmonary hypertension. In vivo miR193 overexpression in the lungs abolished preexisting pulmonary hypertension and resulted in down regulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored pulmonary hypertension-induced miR193 expression via transcription factor retinoid X receptor alpha.

These results established the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the reversal of pulmonary hypertension and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.

“Our research helps unravel the mechanisms involved in the development of pulmonary hypertension,” said senior author Dr. Mansoureh Eghbali, associate professor of anesthesiology at the University of California, Los Angeles. “A key peptide related to HDL cholesterol that can help reduce these oxidized lipids may provide a new target for treatment development.”

Related Links:

University of California, Los Angeles


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Quantitative Immunoassay Analyzer
AS050
New
Flow Cytometer
BF – 710

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more