LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Analysis of Saliva DNA Suggested for Screening Stroke-Linked Mutation

By LabMedica International staff writers
Posted on 06 Jan 2014
Image: PCR products of methylenetetrahydrofolate reductase C677T DNA samples extracted with magnetic nanoparticles using saliva samples (lanes 1-5) and with traditional methods using blood samples (lanes 7-11) (Photo courtesy of Neural Regeneration Research).
Image: PCR products of methylenetetrahydrofolate reductase C677T DNA samples extracted with magnetic nanoparticles using saliva samples (lanes 1-5) and with traditional methods using blood samples (lanes 7-11) (Photo courtesy of Neural Regeneration Research).
Results of real-time PCR analysis of saliva samples from stroke patients and normal controls obtained using a noninvasive magnetic nanoparticle-based technique were consistent with those from conventionally treated blood samples, which had been taken at the same time.

C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. The MTHFR nucleotide at position 677 in the gene has two possibilities: C (cytosine) or T (thymine). C at position 677 (leading to an alanine at amino acid 222) is the normal allele. The 677T allele (leading to a valine substitution at amino acid 222) encodes a thermolabile enzyme with reduced activity. Individuals with two copies of 677C (677CC) have the "normal" or "wildtype" genotype. 677TT individuals (homozygous) have mild MTHFR deficiency. 677CT individuals (heterozygotes) are almost the same as normal individuals, since the one copy of normal MTHFR compensates for the other, thermolabile copy of MTHFR. Individuals with 677TT are predisposed to mild hyperhomocysteinemia (high blood homocysteine levels), as they have less active MTHFR available to produce 5-methyltetrahydrofolate.

Investigators at Peking University Shenzhen Hospital (Shenzhen, China) extracted DNA from saliva samples obtained from 70 stroke patients and 70 healthy controls using a magnetic nanoparticles-based method and from blood using conventional methods. Real-time PCR results revealed that the C677T polymorphism was genotyped by PCR using DNA extracted from both saliva and blood samples. The genotype results were confirmed by gene sequencing, and results for saliva and blood samples were consistent. The mutation TT genotype frequency was significantly higher in the stroke group than in controls. Homocysteine levels were significantly higher than controls in both TT genotype groups.

Based on these results, the authors proposed that, "This noninvasive magnetic nanoparticles-based method using saliva samples could be used to screen for the MTHFR C677T polymorphism in target populations."

The study was published in the November 15, 2013, issue of the journal Neural Regeneration Research.

Related Links:

Peking University Shenzhen Hospital


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Automatic CLIA Analyzer
Shine i9000

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more