LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Mutation Causes Devastating Mitochondrial Diseases

By LabMedica International staff writers
Posted on 19 Sep 2013
Image: Histology of mitochondrial encephalomyopathy with ragged red fibers (Photo courtesy of Dr. K.K. Abu-Amero).
Image: Histology of mitochondrial encephalomyopathy with ragged red fibers (Photo courtesy of Dr. K.K. Abu-Amero).
A novel disease gene has been identified in which mutations cause rare but devastating genetic diseases known as mitochondrial disorder.

Mitochondrial diseases are caused by mutations in either mitochondrial DNA or in genes in the nucleus that encode for proteins that function in the mitochondria.

Scientists at the Loyola University Stritch School of Medicine (Maywood, IL, USA) and their multi-institute collaborators performed a battery of genetic tests to identify a nuclear gene that encodes for a protein called F-Box and Leucine-Rich Repeat Protein 4 (FBXL4).

They found that mutations of this FBXL4 gene lead to either truncated or altered forms of the protein. This results in cells having less mitochondrial DNA, decreased mitochondrial membrane potential and a faulty process in cell metabolism called oxidative phosphorylation. The study also proved that the FBXL4 protein is located exclusively in mitochondria, which was previously unrecognized.

The team used high-performance computer cluster to analyze billions of DNA sequences to identify the gene mutation in a child and her parents. The scientists then reached out to other collaborators to see if any of their patients also had the FBXL4 mutation. Eight additional affected children in six unrelated families were found to also have disease-causing mutations in this gene.

Biochemical assays performed on clinical basis in muscle and/or fibroblasts obtained from several subjects confirmed the deleterious effect of FBXL4 mutations on mitochondrial bioenergetics. Muscle homogenates or isolated mitochondria from subjects with FBXL4 mutations showed variably decreased activity of mitochondrial respiratory chain complexes.

The authors concluded that they provided evidence that recessive FBXL4 mutations are responsible for severe, infantile-onset mitochondrial encephalomyopathy. A child can inherit a mitochondrial disease either from the mother alone or from both parents carrying mutations in the same nuclear gene. Mitochondrial diseases affect between 1 in 4,000 and 1 in 5,000 people. The study was published on August 29, 2013, in the American Journal of Human Genetics.

Related Links:
Loyola University Stritch School of Medicine

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Automatic CLIA Analyzer
Shine i9000

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more