President Obama Pushes BRAIN Initiative Forward
|
By LabMedica International staff writers Posted on 09 Apr 2013 |
In his State of the Union address, US President Obama outlined his strategy for creating jobs and building a growing, flourishing middle class by making an historic investment in medical research and development.
“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.
On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.
The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.
This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.
The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.
Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.
Related Links:
US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation
“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.
On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.
The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.
This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.
The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.
Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.
Related Links:
US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







