LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

President Obama Pushes BRAIN Initiative Forward

By LabMedica International staff writers
Posted on 09 Apr 2013
In his State of the Union address, US President Obama outlined his strategy for creating jobs and building a growing, flourishing middle class by making an historic investment in medical research and development.

“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.

On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.

The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.

This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.

The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.

In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.

Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.

Related Links:

US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more