President Obama Pushes BRAIN Initiative Forward
|
By LabMedica International staff writers Posted on 09 Apr 2013 |
In his State of the Union address, US President Obama outlined his strategy for creating jobs and building a growing, flourishing middle class by making an historic investment in medical research and development.
“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.
On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.
The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.
This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.
The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.
Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.
Related Links:
US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation
“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.
On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.
The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.
This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.
The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.
Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.
Related Links:
US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Existing Hospital Analyzers Can Identify Fake Liquid Medical Products
Counterfeit and substandard medicines remain a serious global health threat, with World Health Organization estimates suggesting that 10.5% of medicines in low- and middle-income countries are either fake... Read more
Rapid Blood Testing Method Aids Safer Decision-Making in Drug-Related Emergencies
Acute recreational drug toxicity is a frequent reason for emergency department visits, yet clinicians rarely have access to confirmatory toxicology results in real time. Instead, treatment decisions are... Read moreMolecular Diagnostics
view channel
New Extraction Kit Enables Consistent, Scalable cfDNA Isolation from Multiple Biofluids
Circulating cell-free DNA (cfDNA) found in plasma, serum, urine, and cerebrospinal fluid is typically present at low concentrations and is often highly fragmented, making efficient recovery challenging... Read more
AI-Powered Liquid Biopsy Classifies Pediatric Brain Tumors with High Accuracy
Liquid biopsies offer a noninvasive way to study cancer by analyzing circulating tumor DNA in body fluids. However, in pediatric brain tumors, the small amount of ctDNA in cerebrospinal fluid has limited... Read moreHematology
view channel
Rapid Cartridge-Based Test Aims to Expand Access to Hemoglobin Disorder Diagnosis
Sickle cell disease and beta thalassemia are hemoglobin disorders that often require referral to specialized laboratories for definitive diagnosis, delaying results for patients and clinicians.... Read more
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read moreImmunology
view channel
New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer
Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read moreBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Rapid Test Promises Faster Answers for Drug-Resistant Infections
Drug-resistant pathogens continue to pose a growing threat in healthcare facilities, where delayed detection can impede outbreak control and increase mortality. Candida auris is notoriously difficult to... Read more
CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria
Antibiotic resistance has accelerated into a global health crisis, with projections estimating more than 10 million deaths per year by 2050 as drug-resistant “superbugs” continue to spread.... Read more
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read morePathology
view channel
Single Sample Classifier Predicts Cancer-Associated Fibroblast Subtypes in Patient Samples
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers, in part because of its dense tumor microenvironment that influences how tumors grow and respond to treatment.... Read more
New AI-Driven Platform Standardizes Tuberculosis Smear Microscopy Workflow
Sputum smear microscopy remains central to tuberculosis treatment monitoring and follow-up, particularly in high‑burden settings where serial testing is routine. Yet consistent, repeatable bacillary assessment... Read more
AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear
Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read moreTechnology
view channel
Blood Test “Clocks” Predict Start of Alzheimer’s Symptoms
More than 7 million Americans live with Alzheimer’s disease, and related health and long-term care costs are projected to reach nearly USD 400 billion in 2025. The disease has no cure, and symptoms often... Read more
AI-Powered Biomarker Predicts Liver Cancer Risk
Liver cancer, or hepatocellular carcinoma, causes more than 800,000 deaths worldwide each year and often goes undetected until late stages. Even after treatment, recurrence rates reach 70% to 80%, contributing... Read more
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreIndustry
view channel
QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio
QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more







