President Obama Pushes BRAIN Initiative Forward
|
By LabMedica International staff writers Posted on 09 Apr 2013 |
In his State of the Union address, US President Obama outlined his strategy for creating jobs and building a growing, flourishing middle class by making an historic investment in medical research and development.
“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.
On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.
The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.
This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.
The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.
Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.
Related Links:
US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation
“If we want to make the best products, we also have to invest in the best ideas... Every dollar we invested to map the human genome returned USD 140 to our economy... Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s… Now is not the time to gut these job-creating investments in science and innovation. Now is the time to reach a level of research and development not seen since the height of the space race,” stated President Barack Obama, in the 2013 State of the Union address.
On April 2, 2012, at the White House, the President revealed an intrepid new research initiative designed to transform understanding of the human brain. Initiated with about USD 100 million in the President’s Fiscal Year 2014 Budget, the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative’s goal to help researchers find new ways to treat, cure, and even prevent brain disorders, such as epilepsy, Alzheimer’s disease, and traumatic brain injury.
The BRAIN Initiative is designed to hasten the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought. These technologies will create new ways to examine how the brain records, processes, uses, stores, retrieves vast quantities of information, and provide insights into the complex ties between behavior and brain function.
This initiative is one of the Administration’s “Grand Challenges” goals that require new developments in science and technology. In his address, the President called on research universities, companies, research foundations, and philanthropists to join with him in identifying and pursuing the Grand Challenges of the 21st century.
The BRAIN Initiative includes: major investments to jumpstart the effort: The US National Institutes of Health (NIH; Bethesda, MD, USA), the Defense Advanced Research Projects Agency (DARPA; Arlington, VA, USA) , and the US National Science Foundation (Arlington, VA, USA) will support approximately USD 100 million in research beginning in FY 2014. Strong academic leadership: The NIH will establish a high-level working group cochaired by Dr. Cornelia Bargmann (The Rockefeller University; New York, NY, USA) and Dr. William Newsome (Stanford University; Stanford, CA, USA) to clarify detailed scientific goals for the NIH’s investment, and to develop a multiyear scientific plan for achieving these goals, including timetables, milestones, and cost estimates.
In the 10 years alone, scientists have made a number of landmark discoveries that now create the opportunity to gain further knowledge of the brain, including the sequencing of the human genome, the increasing resolution of imaging technologies, the development of new tools for mapping neuronal connections, and the expansion of nanoscience. These innovations have offered a chance for unprecedented collaboration and discovery across scientific fields. For instance, by combining sophisticated genetic and optical technologies, scientists can now use pulses of light to determine how specific cell activities in the brain affect behavior. Moreover, through the integration of neuroscience and physics, researchers can now use high-resolution imaging technologies to observe how the brain is structurally and functionally connected in living humans.
Whereas these technologic contributions have substantially added to expanding knowledge of the brain, significant breakthroughs in how physicians treat neurologic and psychiatric disease will require a new generation of applications to enable researchers to map signals from brain cells in much greater numbers and at even faster speeds. This cannot presently be accomplished, but great potential for developing such technologies lies at the crossroads of imaging, nanoscience, engineering, informatics, and other rapidly budding fields of science and engineering.
Related Links:
US National Institutes of Health
US Defense Advanced Research Projects Agency
US National Science Foundation
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Blood Test Enables Non-Invasive Endometriosis Detection
Endometriosis is a chronic, complex, yet relatively common gynecological disorder, reportedly affecting 1 in 10 adult and adolescent women. Endometriosis causes tissue similar to the lining of the uterus... Read more
New Blood Biomarkers Help Diagnose Pregnancy-Linked Liver Complication
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder linked to pregnancy and can pose serious risks for both mother and baby, including premature delivery and stillbirth.... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
Lower-respiratory tract infections (LRTIs) are a leading cause of illness and death worldwide, and pneumonia is the leading infectious cause of death in children under five, claiming the lives of over... Read more
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read more
Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
Blood-based tests for Alzheimer’s disease are transforming diagnosis by offering a simpler alternative to spinal taps and brain imaging. However, many people evaluated at memory clinics also live with... Read more
Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
Chronic liver disease affects millions worldwide and can progress silently to hepatocellular carcinoma (HCC), one of the deadliest cancers globally. While surveillance guidelines exist for patients with... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








