Automated Liquid Handling Platforms Boost Productivity of Synthetic Biology Researchers
|
By LabMedica International staff writers Posted on 21 Feb 2013 |

Image: The Freedom EVO workstation (Photo courtesy of Tecan).
Use of automated robotic liquid handling workstations is giving a dramatic push to development efforts in the exciting new field of synthetic biology.
Synthetic biology is the design and construction of new biological entities such as enzymes, genetic circuits, and cells, or the redesign of existing biological systems. Synthetic biology builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing.
The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components (parts of enzymes, genetic circuits, metabolic pathways, etc.) that can be modeled, understood, and tuned to meet specific performance criteria, and the assembly of these smaller parts and devices into larger integrated systems that solve specific problems. Just as engineers now design integrated circuits based on the known physical properties of materials and then fabricate functioning circuits and entire processors (with relatively high reliability), synthetic biologists will soon design and build engineered biological systems. Unlike many other areas of engineering, biology is nonlinear and less predictable, and there is less knowledge of the parts and how they interact. Hence, the overwhelming physical details of natural biology (gene sequences, protein properties, biological systems) must be organized and recast via a set of design rules that hide information and manage complexity, thereby enabling the engineering of many-component integrated biological systems. It is only when this is accomplished that designs of significant scale will be possible.
Synthetic biologists at the Massachusetts Institute of Technology (Cambridge) have adapted a Tecan (Männedorf, Switzerland) Freedom EVO workstation to help them in the development of genetic circuits. By automating laborious liquid handling protocols, the platform has increased throughput from just a few samples to hundreds of experiments a day.
The Tecan Freedom EVO series offers worktables with building-block modularity that ensures precision, reliable liquid handling, and easy-to-use robotics. Each platform can be combined with a wide choice of robotic arms, liquid handling tools, and application options powered by straightforward software that can be programmed to meet the needs of each individual laboratory. The EVO platform allows a choice of pipetting technologies on the same platform, including the possibility of combining both air and liquid displacement on a single workstation.
"We specifically chose a Tecan system for this application because the software and hardware are easy to extend, and we wanted the flexibility to experiment with different combinations of modules," said Dr. Jonathan Babb, a post-doctoral researcher at the Massachusetts Institute of Technology. "The Freedom EVOware software has an open architecture, making it easy to write and develop scripts and connect the instrument to our own systems and software, and the design of the hardware undoubtedly helps with the integration of our own modules and apparatus onto the worktable. For example, we wanted to be able to store enzymes at -20 degrees Celsius on the deck, and were able to get an automation-friendly chiller that could do this at fairly low cost, without having to make any major modifications to the platform. We have also been able to devise our own colony picking procedures for cell-based screening, and to set up and run an ordinary, low-cost gel station on the platform. The Freedom EVO is able to automatically load and run gels on the gel station, despite the lack of a communication port on this device, eliminating the need for a lot of expensive additional hardware. The flexibility and programmability of the Freedom EVO are invaluable for this, allowing us to rapidly develop in-house solutions and create the elaborate algorithms that are required to perform the many different steps that are necessary for the assembly of genetic circuits. We have successfully demonstrated that every step in the process can be automated and run completely unattended, and are now scaling up to high throughput mode, which will see multiple 96-well plates processed per day."
Related Links:
Massachusetts Institute of Technology
Tecan
Synthetic biology is the design and construction of new biological entities such as enzymes, genetic circuits, and cells, or the redesign of existing biological systems. Synthetic biology builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing.
The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components (parts of enzymes, genetic circuits, metabolic pathways, etc.) that can be modeled, understood, and tuned to meet specific performance criteria, and the assembly of these smaller parts and devices into larger integrated systems that solve specific problems. Just as engineers now design integrated circuits based on the known physical properties of materials and then fabricate functioning circuits and entire processors (with relatively high reliability), synthetic biologists will soon design and build engineered biological systems. Unlike many other areas of engineering, biology is nonlinear and less predictable, and there is less knowledge of the parts and how they interact. Hence, the overwhelming physical details of natural biology (gene sequences, protein properties, biological systems) must be organized and recast via a set of design rules that hide information and manage complexity, thereby enabling the engineering of many-component integrated biological systems. It is only when this is accomplished that designs of significant scale will be possible.
Synthetic biologists at the Massachusetts Institute of Technology (Cambridge) have adapted a Tecan (Männedorf, Switzerland) Freedom EVO workstation to help them in the development of genetic circuits. By automating laborious liquid handling protocols, the platform has increased throughput from just a few samples to hundreds of experiments a day.
The Tecan Freedom EVO series offers worktables with building-block modularity that ensures precision, reliable liquid handling, and easy-to-use robotics. Each platform can be combined with a wide choice of robotic arms, liquid handling tools, and application options powered by straightforward software that can be programmed to meet the needs of each individual laboratory. The EVO platform allows a choice of pipetting technologies on the same platform, including the possibility of combining both air and liquid displacement on a single workstation.
"We specifically chose a Tecan system for this application because the software and hardware are easy to extend, and we wanted the flexibility to experiment with different combinations of modules," said Dr. Jonathan Babb, a post-doctoral researcher at the Massachusetts Institute of Technology. "The Freedom EVOware software has an open architecture, making it easy to write and develop scripts and connect the instrument to our own systems and software, and the design of the hardware undoubtedly helps with the integration of our own modules and apparatus onto the worktable. For example, we wanted to be able to store enzymes at -20 degrees Celsius on the deck, and were able to get an automation-friendly chiller that could do this at fairly low cost, without having to make any major modifications to the platform. We have also been able to devise our own colony picking procedures for cell-based screening, and to set up and run an ordinary, low-cost gel station on the platform. The Freedom EVO is able to automatically load and run gels on the gel station, despite the lack of a communication port on this device, eliminating the need for a lot of expensive additional hardware. The flexibility and programmability of the Freedom EVO are invaluable for this, allowing us to rapidly develop in-house solutions and create the elaborate algorithms that are required to perform the many different steps that are necessary for the assembly of genetic circuits. We have successfully demonstrated that every step in the process can be automated and run completely unattended, and are now scaling up to high throughput mode, which will see multiple 96-well plates processed per day."
Related Links:
Massachusetts Institute of Technology
Tecan
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Existing Hospital Analyzers Can Identify Fake Liquid Medical Products
Counterfeit and substandard medicines remain a serious global health threat, with World Health Organization estimates suggesting that 10.5% of medicines in low- and middle-income countries are either fake... Read more
Rapid Blood Testing Method Aids Safer Decision-Making in Drug-Related Emergencies
Acute recreational drug toxicity is a frequent reason for emergency department visits, yet clinicians rarely have access to confirmatory toxicology results in real time. Instead, treatment decisions are... Read moreMolecular Diagnostics
view channel
New Extraction Kit Enables Consistent, Scalable cfDNA Isolation from Multiple Biofluids
Circulating cell-free DNA (cfDNA) found in plasma, serum, urine, and cerebrospinal fluid is typically present at low concentrations and is often highly fragmented, making efficient recovery challenging... Read more
AI-Powered Liquid Biopsy Classifies Pediatric Brain Tumors with High Accuracy
Liquid biopsies offer a noninvasive way to study cancer by analyzing circulating tumor DNA in body fluids. However, in pediatric brain tumors, the small amount of ctDNA in cerebrospinal fluid has limited... Read moreHematology
view channel
Rapid Cartridge-Based Test Aims to Expand Access to Hemoglobin Disorder Diagnosis
Sickle cell disease and beta thalassemia are hemoglobin disorders that often require referral to specialized laboratories for definitive diagnosis, delaying results for patients and clinicians.... Read more
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read moreImmunology
view channel
New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer
Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read moreBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Rapid Test Promises Faster Answers for Drug-Resistant Infections
Drug-resistant pathogens continue to pose a growing threat in healthcare facilities, where delayed detection can impede outbreak control and increase mortality. Candida auris is notoriously difficult to... Read more
CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria
Antibiotic resistance has accelerated into a global health crisis, with projections estimating more than 10 million deaths per year by 2050 as drug-resistant “superbugs” continue to spread.... Read more
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read morePathology
view channel
Single Sample Classifier Predicts Cancer-Associated Fibroblast Subtypes in Patient Samples
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers, in part because of its dense tumor microenvironment that influences how tumors grow and respond to treatment.... Read more
New AI-Driven Platform Standardizes Tuberculosis Smear Microscopy Workflow
Sputum smear microscopy remains central to tuberculosis treatment monitoring and follow-up, particularly in high‑burden settings where serial testing is routine. Yet consistent, repeatable bacillary assessment... Read more
AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear
Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read moreTechnology
view channel
Blood Test “Clocks” Predict Start of Alzheimer’s Symptoms
More than 7 million Americans live with Alzheimer’s disease, and related health and long-term care costs are projected to reach nearly USD 400 billion in 2025. The disease has no cure, and symptoms often... Read more
AI-Powered Biomarker Predicts Liver Cancer Risk
Liver cancer, or hepatocellular carcinoma, causes more than 800,000 deaths worldwide each year and often goes undetected until late stages. Even after treatment, recurrence rates reach 70% to 80%, contributing... Read more
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreIndustry
view channel
QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio
QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more







