Synchrotron X-Ray Crystallography Generates Insulin-Insulin Receptor Binding Images
|
By LabMedica International staff writers Posted on 24 Jan 2013 |
The light generated by a state-of-the-art particle accelerator was used to capture X-ray crystallographic images of the three-dimensional interaction between insulin and its receptor.
Insulin receptor signaling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation, and survival. Insulin resistance contributes to the development of diseases such as type II diabetes mellitus and Alzheimer’s disease. Abnormal signaling generated by cross talk with the homologous type 1 insulin-like growth factor receptor (IGF1R) occurs in various cancers. Despite more than thirty years of research, it has not been possible to document the three-dimensional structure of the insulin-insulin receptor due to the complexity of producing the receptor protein.
In a paper published in the January 9, 2013, online edition of the journal Nature an international research time described the use of the Australian Synchrotron to capture the three-dimensional structure of insulin bound to the insulin receptor.
The Australian Synchrotron (Clayton, Australia) is a light source facility that uses particle accelerators to produce a beam of high-energy electrons that are placed within a storage ring that circulates the electrons to create synchrotron light. The electron beams travel at just under the speed of light - about 299,792 kilometers per second, and the intense light they produce is filtered and adjusted to travel down separate beamlines to separate end stations where are placed a variety of experimental equipment including one for protein crystallography.
X-ray crystallographic images generated by the Synchrotron revealed the sparse direct interaction of insulin with the first leucine-rich-repeat domain (L1) of the insulin receptor. Instead, the hormone engaged the insulin receptor carboxy-terminal alpha-chain (alphaCT) segment, which was itself remodeled on the face of L1 upon insulin binding. Contact between insulin and L1 was restricted to insulin B-chain residues. The alphaCT segment displaced the B-chain C-terminal beta-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is thought to be novel within the broader family of receptor tyrosine kinases.
"We have now found that the insulin hormone engages its receptor in a very unusual way," said senior author Dr. Michael C. Lawrence, associate professor of structural biology at Walter and Eliza Hall Institute of Medical Research (Melbourne, Australia). "Both insulin and its receptor undergo rearrangement as they interact - a piece of insulin folds out and key pieces within the receptor move to engage the insulin hormone."
"Understanding how insulin interacts with the insulin receptor is fundamental to the development of novel insulins for the treatment of diabetes," said Dr. Lawrence. "Until now we have not been able to see how these molecules interact with cells. We can now exploit this knowledge to design new insulin medications with improved properties, which is very exciting. Insulin is a key treatment for diabetics, but there are many ways that its properties could potentially be improved. This discovery could conceivably lead to new types of insulin that could be given in ways other than injection, or an insulin that has improved properties or longer activity so that it does not need to be taken as often. It may also have ramifications for diabetes treatment in developing nations, by creating insulin that is more stable and less likely to degrade when not kept cold, an angle being pursued by our collaborators. Our findings are a new platform for developing these kinds of medications."
Related Links:
Australian Synchrotron
Walter and Eliza Hall Institute of Medical Research
Insulin receptor signaling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation, and survival. Insulin resistance contributes to the development of diseases such as type II diabetes mellitus and Alzheimer’s disease. Abnormal signaling generated by cross talk with the homologous type 1 insulin-like growth factor receptor (IGF1R) occurs in various cancers. Despite more than thirty years of research, it has not been possible to document the three-dimensional structure of the insulin-insulin receptor due to the complexity of producing the receptor protein.
In a paper published in the January 9, 2013, online edition of the journal Nature an international research time described the use of the Australian Synchrotron to capture the three-dimensional structure of insulin bound to the insulin receptor.
The Australian Synchrotron (Clayton, Australia) is a light source facility that uses particle accelerators to produce a beam of high-energy electrons that are placed within a storage ring that circulates the electrons to create synchrotron light. The electron beams travel at just under the speed of light - about 299,792 kilometers per second, and the intense light they produce is filtered and adjusted to travel down separate beamlines to separate end stations where are placed a variety of experimental equipment including one for protein crystallography.
X-ray crystallographic images generated by the Synchrotron revealed the sparse direct interaction of insulin with the first leucine-rich-repeat domain (L1) of the insulin receptor. Instead, the hormone engaged the insulin receptor carboxy-terminal alpha-chain (alphaCT) segment, which was itself remodeled on the face of L1 upon insulin binding. Contact between insulin and L1 was restricted to insulin B-chain residues. The alphaCT segment displaced the B-chain C-terminal beta-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is thought to be novel within the broader family of receptor tyrosine kinases.
"We have now found that the insulin hormone engages its receptor in a very unusual way," said senior author Dr. Michael C. Lawrence, associate professor of structural biology at Walter and Eliza Hall Institute of Medical Research (Melbourne, Australia). "Both insulin and its receptor undergo rearrangement as they interact - a piece of insulin folds out and key pieces within the receptor move to engage the insulin hormone."
"Understanding how insulin interacts with the insulin receptor is fundamental to the development of novel insulins for the treatment of diabetes," said Dr. Lawrence. "Until now we have not been able to see how these molecules interact with cells. We can now exploit this knowledge to design new insulin medications with improved properties, which is very exciting. Insulin is a key treatment for diabetics, but there are many ways that its properties could potentially be improved. This discovery could conceivably lead to new types of insulin that could be given in ways other than injection, or an insulin that has improved properties or longer activity so that it does not need to be taken as often. It may also have ramifications for diabetes treatment in developing nations, by creating insulin that is more stable and less likely to degrade when not kept cold, an angle being pursued by our collaborators. Our findings are a new platform for developing these kinds of medications."
Related Links:
Australian Synchrotron
Walter and Eliza Hall Institute of Medical Research
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Urine Test Detects Early Stage Pancreatic Cancer
Pancreatic cancer remains among the hardest cancers to detect early. In the UK, around 10,000 people are diagnosed each year, but only 5% survive beyond five years. Late diagnosis is a major factor—more... Read more
Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








