Heart Cells Created in the Lab Devised for Drug Testing, Disease Research
By LabMedica International staff writers Posted on 02 May 2012 |
Heart-like cells created in the lab from the skin of patients with a common cardiac disorder have been shown to contract less strongly than similarly created cells from unaffected family members. The cells also exhibit abnormal structure and respond only slightly to the wave of calcium signals that trigger each heartbeat.
Investigators used induced pluripotent stem (iPS) cell technology to create heart-muscle-like cells from the skin of patients with dilated cardiomyopathy, which is one of the leading causes of heart failure and heart transplantation in the United States. It adds to a growing body of evidence indicating that iPS cells can accurately reflect the disease status of the patients from whom they are derived.
Using the newly created diseased and normal cells, the researchers, the Stanford University School of Medicine (Stanford, CA, USA), were able to directly observe for the first time the effect of a common beta blocker drug, as well as validate the potential usefulness of a gene therapy approach currently in clinical trials.
“Primary human cardiac cells are difficult to obtain and don’t live long under laboratory conditions,” said Joseph Wu, MD, PhD, associate professor of cardiovascular medicine. Instead, researchers have relied on studies of cells from rat hearts, which beat much more rapidly, to determine more about human heart disease. “Now we’ve created heart cells from iPS cells derived from skin that allow us to study in detail the mechanisms of a common cardiac disease and how these cells respond to clinical interventions.”
Dr. Wu is the senior author of the research, which was published April 18, 2012, in the journal Science Translational Medicine. Postdoctoral scholar Ning Sun, MD, PhD, is the first author. The research is the latest in a type of research that is at times referred to as “disease-in-a-dish” studies. Employing iPS technology, other researchers have created stem cells from patients with disorders including Parkinson’s disease, amyotrophic lateral sclerosis, and Marfan syndrome.
The implications of such research are huge. According to Dr. Wu, one of the major reasons cardiac drugs are pulled from the market is unexpected cardiac toxicity--that is, they are damaging the very hearts they are meant to help. Presently, such drugs are prescreened for toxic effects on common laboratory cell lines derived from either hamster ovaries or human embryonic kidney cells. Even though these ovarian and kidney cells have been artificially induced to mimic the electrophysiology of human heart cells, they are still very different from the real thing. A reliable source of diseased and normal human heart cells on which to test the drugs’ effect prior to clinical use could improve drug screening, save billions of dollars and improve the lives of countless patients.
Dilated cardiomyopathy occurs when a part of the heart muscle enlarges and begins to lose the ability to pump blood efficiently.
Ultimately, the enlarged muscle starts to weaken and fail, requiring either medication or even transplant. Dilated cardiomyopathy, although in many instances, sporadically and without an obvious cause, can also be inherited from a range of genetic mutations.
The scientists performed skin biopsies on seven members of three generations of a family with the inherited form of the condition (called familial dilated cardiomyopathy). Four of the family members had inherited a specific genetic mutation--in a gene called TNNT2--that causes the disease; the other three had not.
The researchers used iPS technology to convert skin cells from the affected and unaffected family members into stem cells, which they then coaxed to become heart muscle cells for further study. They then compared cells from unaffected family members with those who had the disease.
“We didn’t know exactly how the mutation carried in this family would impact the contractility of the cells,” said Dr. Sun. “Other studies had indicated that this mutation decreased calcium sensitivity in rodent cells, but we had no direct biochemical data on human cells. We were able to show that the force of contraction was lower in cells from patients with the mutation. We also saw that, as predicted in the rodent model, they were less responsive to calcium signaling.” (In a healthy heart, quick, periodic upsurges in calcium levels inside heart cells trigger each contraction.)
Drs. Wu and Sun also established that the diseased cells exhibit structural differences and are more susceptible to mechanical stress than unaffected cells. When the researchers treated the diseased cells with metoprolol, a beta-blocker commonly used to treat cardiomyopathy, they found that it decreased the frequency of contractions as expected. It also increased the responsiveness of the cells to calcium, and over time, helped resolve some of the structural differences between affected and unaffected cells.
Finally, they demonstrated that adding a protein called Serca2a, which may inhibit the damaging effect of the mutated TNNT2 gene, considerably improved the contraction forcefulness of the diseased cells. Serca2a is currently in clinical trials as a possible gene therapy for dilated cardiomyopathy.
“Next, we’d like to continue looking at cells from patients with other mutations associated with this disorder,” said Dr. Wu. “How do they behave in culture? Do they respond in the same way? What is the mechanism for their response? What changes if we selectively introduce different mutations into these cells? And how do we scale up drug screening using cardiac specific iPS cell lines?”
Related Links:
Stanford University School of Medicine
Investigators used induced pluripotent stem (iPS) cell technology to create heart-muscle-like cells from the skin of patients with dilated cardiomyopathy, which is one of the leading causes of heart failure and heart transplantation in the United States. It adds to a growing body of evidence indicating that iPS cells can accurately reflect the disease status of the patients from whom they are derived.
Using the newly created diseased and normal cells, the researchers, the Stanford University School of Medicine (Stanford, CA, USA), were able to directly observe for the first time the effect of a common beta blocker drug, as well as validate the potential usefulness of a gene therapy approach currently in clinical trials.
“Primary human cardiac cells are difficult to obtain and don’t live long under laboratory conditions,” said Joseph Wu, MD, PhD, associate professor of cardiovascular medicine. Instead, researchers have relied on studies of cells from rat hearts, which beat much more rapidly, to determine more about human heart disease. “Now we’ve created heart cells from iPS cells derived from skin that allow us to study in detail the mechanisms of a common cardiac disease and how these cells respond to clinical interventions.”
Dr. Wu is the senior author of the research, which was published April 18, 2012, in the journal Science Translational Medicine. Postdoctoral scholar Ning Sun, MD, PhD, is the first author. The research is the latest in a type of research that is at times referred to as “disease-in-a-dish” studies. Employing iPS technology, other researchers have created stem cells from patients with disorders including Parkinson’s disease, amyotrophic lateral sclerosis, and Marfan syndrome.
The implications of such research are huge. According to Dr. Wu, one of the major reasons cardiac drugs are pulled from the market is unexpected cardiac toxicity--that is, they are damaging the very hearts they are meant to help. Presently, such drugs are prescreened for toxic effects on common laboratory cell lines derived from either hamster ovaries or human embryonic kidney cells. Even though these ovarian and kidney cells have been artificially induced to mimic the electrophysiology of human heart cells, they are still very different from the real thing. A reliable source of diseased and normal human heart cells on which to test the drugs’ effect prior to clinical use could improve drug screening, save billions of dollars and improve the lives of countless patients.
Dilated cardiomyopathy occurs when a part of the heart muscle enlarges and begins to lose the ability to pump blood efficiently.
Ultimately, the enlarged muscle starts to weaken and fail, requiring either medication or even transplant. Dilated cardiomyopathy, although in many instances, sporadically and without an obvious cause, can also be inherited from a range of genetic mutations.
The scientists performed skin biopsies on seven members of three generations of a family with the inherited form of the condition (called familial dilated cardiomyopathy). Four of the family members had inherited a specific genetic mutation--in a gene called TNNT2--that causes the disease; the other three had not.
The researchers used iPS technology to convert skin cells from the affected and unaffected family members into stem cells, which they then coaxed to become heart muscle cells for further study. They then compared cells from unaffected family members with those who had the disease.
“We didn’t know exactly how the mutation carried in this family would impact the contractility of the cells,” said Dr. Sun. “Other studies had indicated that this mutation decreased calcium sensitivity in rodent cells, but we had no direct biochemical data on human cells. We were able to show that the force of contraction was lower in cells from patients with the mutation. We also saw that, as predicted in the rodent model, they were less responsive to calcium signaling.” (In a healthy heart, quick, periodic upsurges in calcium levels inside heart cells trigger each contraction.)
Drs. Wu and Sun also established that the diseased cells exhibit structural differences and are more susceptible to mechanical stress than unaffected cells. When the researchers treated the diseased cells with metoprolol, a beta-blocker commonly used to treat cardiomyopathy, they found that it decreased the frequency of contractions as expected. It also increased the responsiveness of the cells to calcium, and over time, helped resolve some of the structural differences between affected and unaffected cells.
Finally, they demonstrated that adding a protein called Serca2a, which may inhibit the damaging effect of the mutated TNNT2 gene, considerably improved the contraction forcefulness of the diseased cells. Serca2a is currently in clinical trials as a possible gene therapy for dilated cardiomyopathy.
“Next, we’d like to continue looking at cells from patients with other mutations associated with this disorder,” said Dr. Wu. “How do they behave in culture? Do they respond in the same way? What is the mechanism for their response? What changes if we selectively introduce different mutations into these cells? And how do we scale up drug screening using cardiac specific iPS cell lines?”
Related Links:
Stanford University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more