LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fluorescent Probes Indicate Levels of Stress in Biological Membranes

By LabMedica International staff writers
Posted on 12 Sep 2011
Print article
A model system has been developed that will allow researchers to determine how various types of stress effect natural and synthetic biological membranes.

Investigators at the University of Pennsylvania (Philadelphia, USA) and their colleagues at Duke University (Durham, NC, USA) based the model system on polymersomes charged with a fluorescent probe.

Polymersomes are a class of artificial vesicles with radii ranging from 50 nm to 5 μm that are made from amphiphilic synthetic block copolymers to form the vesicle membrane. Most reported polymersomes contain an aqueous solution in their core and are useful for encapsulating and protecting sensitive molecules, such as drugs, enzymes, other proteins and peptides, and DNA and RNA fragments. Polymersomes are similar to liposomes, which are vesicles formed from naturally occurring lipids. While having many of the properties of natural liposomes, polymersomes exhibit increased stability and reduced permeability.

For the signaling system, the investigators selected supermolecular porphyrin-based fluorophores to act as molecular rotors. They characterized changes in the optical emission of these near-infrared- (NIR) emissive probes that were embedded within the hydrophobic core of the polymersome membranes. The configuration of entrapped fluorophore depends on the available space within the membrane; in response to increased volume, emission is blue shifted. This feature was used to study how shifts in fluorescence correlated to membrane integrity, imparted by membrane stress.

A paper published in the August 23, 2011, issue of the journal Proceedings of the [US] National Academy of Sciences described how the system was calibrated. The investigators monitored changes in emission of the porphyrin-based fluorophores resulting from membrane stress produced through a range of physical and chemical perturbations, including surfactant-induced lysis, hydrolytic lysis, thermal degradation, and applied stress by micropipette aspiration.

“When you package these porphyrins in a confined environment, such as a polymersome membrane, you can modulate the light emission from the molecules,” said senior author Dr. Daniel Hammer, professor of bioengineering at the University of Pennsylvania. “If you put a stress on the confined environment, you change the porphyrin's configuration, and, because their optical release is tied to their configuration, you can use the optical release as a direct measure of the stress in the environment.”

Related Links:

University of Pennsylvania
Duke University


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.