LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Electrical Impedance Measures Physiological Changes in Skeletal Muscle Thickness

By LabMedica International staff writers
Posted on 19 May 2011
Print article
Changes in myotube thickness were measured by measuring cellular electrical impedance.

Tracking physiological changes in skeletal muscle thickness is a direct and unbiased approach in screening therapeutic compounds that prevent skeletal muscle atrophy or induce hypertrophy. In drug screening, it would be beneficial to find novel treatments that prevent muscle atrophy and other diseases associated with any morphologic change in cell shape.

Both qualitative and quantitative changes in electrical impedance as a function of cellular adhesion in real time correlated well with variation in myotube thickness caused by atrophy or hypertrophy agents. Conversely, pharmacologic blocking myotube hypertrophy prevented changes in electrical impedance.

Sergey Rakhilin PhD of Novartis (Basel, Switzerland) and colleagues used the xCELLigence system from Roche (Penzberg, Germany) to show that both qualitative and quantitative changes in electrical impedance as a function of cellular adhesion in real time correlate well with variation in myotube thickness caused by atrophy or hypertrophy agents. Conversely, pharmacologic blocking myotube hypertrophy prevented changes in electrical impedance. According to the study, impedance can be used as a reliable and sensitive biomarker for myotube atrophy or hypertrophy.

The study appeared online on April 14, 2011 in the Journal of Biomolecular Screening.

In the past, it was difficult to estimate accurate cell thickness for a couple of reasons. One is the extreme heterogeneity of the myotube cellular population and therefore the lack of a regular distribution of perturbed myotubes. Another reason is the fact that differentiated myotubes form a confluent layer, which makes it difficult to estimate parameters of individual cells. In addition, most of the atrophy or hypertrophy-induced changes in cell thickness are relatively small (less than twofold) and therefore hard to detect with low statistical error. Electrical impedance measurement overcomes these hurdles and offers a reliable method to determine cell thickness.

Related Links:
Novartis
Roche


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.