First Molecule Created to Suppress Major Component of Cancer Gene On-Off Switch
|
By LabMedica International staff writers Posted on 21 Oct 2010 |
In the endeavor to block the growth and spread of tumors, there have been many attempts to get cancer genes to ignore their internal regulatory instructions. In a new study, a team of scientists has created the first molecule able to prevent cancer genes from "hearing” those instructions, inhibiting the cancer process at its foundation.
The study, published online in late September 2010 by the journal Nature, demonstrated that proteins delivering stop and start instructions to a cancer gene--known as epigenetic "reader” proteins--can be targeted for future cancer therapies. The research is particularly pertinent to a rare but destructive cancer of children and young adults known as NUT midline carcinoma (NMC)--a disease so inflexible that no potential therapy for it has ever reached the stage of being evaluated in a clinical trial.
"In recent years, it has become clear that being able to control gene activity in cancer-- manipulating which genes are ‘on' or ‘off''--can be a high-impact approach to the disease,” said the study's senior author, James Bradner, M.D., of Dana-Farber Cancer Institute (Boston, MA, USA). "If you can switch off a cancer cell's growth genes, the cell will die. Alternatively, switching on a tissue gene can cause a cancer cell to become a more normal tissue cell.”
In this study, Dr. Bradner's lab synthesized a molecule that has both effects: by blocking a specific abnormal protein in NUT midline carcinoma cells, it stops them from dividing so prolifically and makes them ‘forget' they are cancer cells and start appearing more like normal cells. The assembled molecule affects the cell's multilayered machinery for controlling gene activity--the set of structures collectively known as the epigenome. Large portions of each gene play a regulatory role, dictating whether the gene is active, industriously sending orders for new proteins, or inactive, and temporarily at rest.
The gene's DNA is packaged in a substance called chromatin, which is the slate on which instructions to begin or cease activity are inscribed. The instructions themselves take the form of "bookmarks,” material placed on the chromatin by so-called epigenetic "writer” proteins. Another group of epigenetic proteins, known as "erasers,” is able to remove the bookmarks. Both types of proteins have effectively been disabled by researchers, using molecules generated in the laboratory or taken from nature. Their success has triggered intense interest in the development of anticancer therapies that work by blocking such proteins.
A third kind of epigenetic proteins--potentially the most appealing as therapeutic targets, because they switch genes on or off by "reading” the bookmarks--has received scant scientific attention. Dr. Bradner and his colleagues looked to this little-studied area of biology by focusing on NMC cells.
The disease is caused by a chromosomal translocation, in which two genes from different chromosomes become connected and give rise to an abnormal, fused protein known as BRD4-NUT. A review of the scientific literature suggested that some members of the benzodiazepine family of drugs, which includes Valium, Xanax, and Ativan, are active against "bromodomain” proteins such as BRD4. With that as a clue, Dr. Bradner and his Dana-Farber colleague Jun Qi, Ph.D., created an array of molecules to see if any inhibited a "reader” protein of the BRD4-NUT gene. One did, quite persuasively--a hybrid molecule, which researchers named JQ1, for Qi.
The investigators worked with researchers in the United States and overseas to learn more about the properties of JQ1 and how it works in cells. Stefan Knapp, Ph.D., of Oxford University (U.K.), provided crystal-clear images of the molecule bound to a protein; Olaf Wiest, Ph.D., of the University of Notre Dame (West Bend, IN, USA), showed that the molecule is less flexible in the presence of a protein, clarifying why it so effectively blocks the protein; and Andrew Kung, M.D., Ph.D., of Dana-Farber, modified animal models in which the molecule could be tested against NMC tumors.
The animal studies were especially promising. Investigators transplanted NMC cells from patients into laboratory mice, which were then given the JQ1 molecule. "The activity of the molecule was remarkable,” noted Dr. Bradner. "All the mice that received JQ1 lived; all that did not, died.”
For now, JQ1's primary utility is as a probe for better understanding the biology underlying NUT midline carcinoma. Drs. Bradner, Qi and their colleagues are customizing the molecule to maximize its effectiveness as a BRD4-NUT stopper. Ultimately, it, or a similar molecule, could be the basis for the first effective therapy against NMC.
"The disease tends to arise in the chest, head, or neck, along the vertical centerline of the body, with aggressive tumor growth and metastasis,” Dr. Bradner explained. "Patients may have a brief response to chemotherapy, but they eventually succumb to the spread of the disease.”
Unlike most cancers, NMC's tissue of origin is not known. It is a disease defined entirely by its genetic signature--the presence of the translocated gene BRD4-NUT. Prior to its genetic identification by Christopher French, M.D., of Brigham and Women's Hospital (Boston, MA, USA) and a study coauthor, NMC was not recognized as a definitive disease.
"This research further illustrates the promise of personalized medicine,” Dr. Bradner remarked, "which is the ability to deliver selected molecules to cancer-causing proteins to stop the cancer process while producing a minimum of residual side effects. The development of JQ1 or similar molecule into a drug may produce the first therapy specifically designed for patients with NMC.”
Related Links:
Dana-Farber Cancer Institute
Brigham and Women's Hospital
The study, published online in late September 2010 by the journal Nature, demonstrated that proteins delivering stop and start instructions to a cancer gene--known as epigenetic "reader” proteins--can be targeted for future cancer therapies. The research is particularly pertinent to a rare but destructive cancer of children and young adults known as NUT midline carcinoma (NMC)--a disease so inflexible that no potential therapy for it has ever reached the stage of being evaluated in a clinical trial.
"In recent years, it has become clear that being able to control gene activity in cancer-- manipulating which genes are ‘on' or ‘off''--can be a high-impact approach to the disease,” said the study's senior author, James Bradner, M.D., of Dana-Farber Cancer Institute (Boston, MA, USA). "If you can switch off a cancer cell's growth genes, the cell will die. Alternatively, switching on a tissue gene can cause a cancer cell to become a more normal tissue cell.”
In this study, Dr. Bradner's lab synthesized a molecule that has both effects: by blocking a specific abnormal protein in NUT midline carcinoma cells, it stops them from dividing so prolifically and makes them ‘forget' they are cancer cells and start appearing more like normal cells. The assembled molecule affects the cell's multilayered machinery for controlling gene activity--the set of structures collectively known as the epigenome. Large portions of each gene play a regulatory role, dictating whether the gene is active, industriously sending orders for new proteins, or inactive, and temporarily at rest.
The gene's DNA is packaged in a substance called chromatin, which is the slate on which instructions to begin or cease activity are inscribed. The instructions themselves take the form of "bookmarks,” material placed on the chromatin by so-called epigenetic "writer” proteins. Another group of epigenetic proteins, known as "erasers,” is able to remove the bookmarks. Both types of proteins have effectively been disabled by researchers, using molecules generated in the laboratory or taken from nature. Their success has triggered intense interest in the development of anticancer therapies that work by blocking such proteins.
A third kind of epigenetic proteins--potentially the most appealing as therapeutic targets, because they switch genes on or off by "reading” the bookmarks--has received scant scientific attention. Dr. Bradner and his colleagues looked to this little-studied area of biology by focusing on NMC cells.
The disease is caused by a chromosomal translocation, in which two genes from different chromosomes become connected and give rise to an abnormal, fused protein known as BRD4-NUT. A review of the scientific literature suggested that some members of the benzodiazepine family of drugs, which includes Valium, Xanax, and Ativan, are active against "bromodomain” proteins such as BRD4. With that as a clue, Dr. Bradner and his Dana-Farber colleague Jun Qi, Ph.D., created an array of molecules to see if any inhibited a "reader” protein of the BRD4-NUT gene. One did, quite persuasively--a hybrid molecule, which researchers named JQ1, for Qi.
The investigators worked with researchers in the United States and overseas to learn more about the properties of JQ1 and how it works in cells. Stefan Knapp, Ph.D., of Oxford University (U.K.), provided crystal-clear images of the molecule bound to a protein; Olaf Wiest, Ph.D., of the University of Notre Dame (West Bend, IN, USA), showed that the molecule is less flexible in the presence of a protein, clarifying why it so effectively blocks the protein; and Andrew Kung, M.D., Ph.D., of Dana-Farber, modified animal models in which the molecule could be tested against NMC tumors.
The animal studies were especially promising. Investigators transplanted NMC cells from patients into laboratory mice, which were then given the JQ1 molecule. "The activity of the molecule was remarkable,” noted Dr. Bradner. "All the mice that received JQ1 lived; all that did not, died.”
For now, JQ1's primary utility is as a probe for better understanding the biology underlying NUT midline carcinoma. Drs. Bradner, Qi and their colleagues are customizing the molecule to maximize its effectiveness as a BRD4-NUT stopper. Ultimately, it, or a similar molecule, could be the basis for the first effective therapy against NMC.
"The disease tends to arise in the chest, head, or neck, along the vertical centerline of the body, with aggressive tumor growth and metastasis,” Dr. Bradner explained. "Patients may have a brief response to chemotherapy, but they eventually succumb to the spread of the disease.”
Unlike most cancers, NMC's tissue of origin is not known. It is a disease defined entirely by its genetic signature--the presence of the translocated gene BRD4-NUT. Prior to its genetic identification by Christopher French, M.D., of Brigham and Women's Hospital (Boston, MA, USA) and a study coauthor, NMC was not recognized as a definitive disease.
"This research further illustrates the promise of personalized medicine,” Dr. Bradner remarked, "which is the ability to deliver selected molecules to cancer-causing proteins to stop the cancer process while producing a minimum of residual side effects. The development of JQ1 or similar molecule into a drug may produce the first therapy specifically designed for patients with NMC.”
Related Links:
Dana-Farber Cancer Institute
Brigham and Women's Hospital
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more
First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
Each year, over 1 million people worldwide are diagnosed with gastric (stomach) cancer, and over 800,000 people die of the disease. It is among the top 5 deadliest cancers worldwide for both men and women.... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read more
Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
Diagnosing disease typically requires milliliters of blood drawn at clinics, depending on needles, laboratory infrastructure, and trained personnel. This process is often painful, resource-intensive, and... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more




 assay.jpg)

 Analyzer.jpg)

