Link Between Aging Pathways in Mice Uncovered
|
By LabMedica International staff writers Posted on 11 Feb 2009 |
Two earlier identified pathways associated with aging in mice are linked, according to new research. This finding supports what researchers have recently begun to suspect: that the age-related degeneration of tissues, organs, and even facial skin is an active, purposeful process instead of a gradual failure of tired cells.
Derailing or suppressing this molecular treachery, although still far in the future, may enable investigators to one day add years on human lives--or at least delay the appearance of that next wrinkle. "There is a genetic process that has to be on, and enforced, in order for aging to happen,” said Howard Chang, M.D., Ph.D., associate professor of dermatology at the Stanford University School of Medicine (CA, USA; http://med.stanford.edu) and a member of Stanford's Cancer Center. "It's possible that those rare individuals who live beyond 100 years have a less-efficient version of this master pathway, just as children with progeria--a genetic aging disease--may have components of this pathway that are more active.”
The study, which was published in the January 9, 2009, issue of the journal Cell, came out of a three-year collaboration between Dr. Chang and Katrin Chua, M.D., Ph.D., assistant professor of endocrinology, gerontology, and metabolism at Stanford and a member of the Stanford Cancer Center. Drs. Chang and Chua are co-senior authors of the research.
The researchers focused their investigation on two seemingly separate pathways connected to aging. One involved a molecule known as SIRT6--a member of the sirtuin family of proteins that modulate life span in organisms such as yeast and worms--that Dr. Chua's laboratory has been studying for several years. She and her lab members have previously shown that SIRT6 is involved in genomic stability and the protection of chromosomal ends called telomeres. Telomeres, which grow shorter with each cell division, are thought to function as a sort of internal molecular clock associated with aging. Furthermore, mice lacking SIRT6 are born normally but die within a few weeks because of a rapid, multi-organ degeneration that somewhat resembles premature aging.
"Sirtuin family members have been implicated in aging and age-related diseases,” said Dr. Chua, "but very little was known about how SIRT6 worked on a molecular level until recently. Our new study reveals that SIRT6, in addition to its role in genomic stability and telomere protection, also regulates gene expression.”
The other pathway involved a better-known protein called NF-kappa B (NF-kB), which binds to and regulates the expression of many genes, including those involved in aging. The expression of many of these genes increases with age, and blocking the activity of NF-kB in the skin cells of elderly mice causes them to look and act like younger cells.
The researchers speculated if NF-kB and SIRT6 somehow work together to help cells age properly. They discovered that, in human and mouse cells, SIRT6 binds to a subunit of NF-kB and modifies components of a nearby DNA packaging hub, called histones. This modification makes it more difficult for NF-kB to trigger the expression of the downstream gene--possibly by causing the DNA to twist in such a way to kick off the protein.
"It seems that an important job of SIRT6 is to restrain NF-kB and limit the expression of genes associated with aging,” said Dr. Chang. "We've been interested in the activity of regulatory genes such as NF-kB during aging for several years now, and we were quite happy to find this very clear biochemical connection between these two pathways.”
Young mice lacking the SIRT6 protein displayed elevated levels of NF-kB-dependent genes involved in immune response, cell signaling, and metabolism--all potentially involved in the uniformly fatal aging-like condition that killed them within four weeks of birth. Suppressing the expression of the gene for NF-kB's SIRT-binding subunit allowed some of the mice to escape this fate.
"Mice lacking SIRT6 seem to hit some kind of a wall at around four weeks of age,” said Dr. Chua, "when their blood sugar drops to a level barely compatible with life. Reducing NF-kB activity somehow allows the mice to get over this critical period and to live much longer. These mice provide a great new tool to study the effect of SIRT6-deficiency in much older animals than was possible before.”
The researchers are now working to understand how NF-kB knows when and to what extent during an organism's lifetime to initiate the degenerative process and what role SIRT6 may play. "It's a very provocative question,” said Dr. Chang. "We've tied together two previously separate pathways in aging. Now we'd like to better understand what regulates that pathway.”
Related Links:
Stanford University School of Medicine
Derailing or suppressing this molecular treachery, although still far in the future, may enable investigators to one day add years on human lives--or at least delay the appearance of that next wrinkle. "There is a genetic process that has to be on, and enforced, in order for aging to happen,” said Howard Chang, M.D., Ph.D., associate professor of dermatology at the Stanford University School of Medicine (CA, USA; http://med.stanford.edu) and a member of Stanford's Cancer Center. "It's possible that those rare individuals who live beyond 100 years have a less-efficient version of this master pathway, just as children with progeria--a genetic aging disease--may have components of this pathway that are more active.”
The study, which was published in the January 9, 2009, issue of the journal Cell, came out of a three-year collaboration between Dr. Chang and Katrin Chua, M.D., Ph.D., assistant professor of endocrinology, gerontology, and metabolism at Stanford and a member of the Stanford Cancer Center. Drs. Chang and Chua are co-senior authors of the research.
The researchers focused their investigation on two seemingly separate pathways connected to aging. One involved a molecule known as SIRT6--a member of the sirtuin family of proteins that modulate life span in organisms such as yeast and worms--that Dr. Chua's laboratory has been studying for several years. She and her lab members have previously shown that SIRT6 is involved in genomic stability and the protection of chromosomal ends called telomeres. Telomeres, which grow shorter with each cell division, are thought to function as a sort of internal molecular clock associated with aging. Furthermore, mice lacking SIRT6 are born normally but die within a few weeks because of a rapid, multi-organ degeneration that somewhat resembles premature aging.
"Sirtuin family members have been implicated in aging and age-related diseases,” said Dr. Chua, "but very little was known about how SIRT6 worked on a molecular level until recently. Our new study reveals that SIRT6, in addition to its role in genomic stability and telomere protection, also regulates gene expression.”
The other pathway involved a better-known protein called NF-kappa B (NF-kB), which binds to and regulates the expression of many genes, including those involved in aging. The expression of many of these genes increases with age, and blocking the activity of NF-kB in the skin cells of elderly mice causes them to look and act like younger cells.
The researchers speculated if NF-kB and SIRT6 somehow work together to help cells age properly. They discovered that, in human and mouse cells, SIRT6 binds to a subunit of NF-kB and modifies components of a nearby DNA packaging hub, called histones. This modification makes it more difficult for NF-kB to trigger the expression of the downstream gene--possibly by causing the DNA to twist in such a way to kick off the protein.
"It seems that an important job of SIRT6 is to restrain NF-kB and limit the expression of genes associated with aging,” said Dr. Chang. "We've been interested in the activity of regulatory genes such as NF-kB during aging for several years now, and we were quite happy to find this very clear biochemical connection between these two pathways.”
Young mice lacking the SIRT6 protein displayed elevated levels of NF-kB-dependent genes involved in immune response, cell signaling, and metabolism--all potentially involved in the uniformly fatal aging-like condition that killed them within four weeks of birth. Suppressing the expression of the gene for NF-kB's SIRT-binding subunit allowed some of the mice to escape this fate.
"Mice lacking SIRT6 seem to hit some kind of a wall at around four weeks of age,” said Dr. Chua, "when their blood sugar drops to a level barely compatible with life. Reducing NF-kB activity somehow allows the mice to get over this critical period and to live much longer. These mice provide a great new tool to study the effect of SIRT6-deficiency in much older animals than was possible before.”
The researchers are now working to understand how NF-kB knows when and to what extent during an organism's lifetime to initiate the degenerative process and what role SIRT6 may play. "It's a very provocative question,” said Dr. Chang. "We've tied together two previously separate pathways in aging. Now we'd like to better understand what regulates that pathway.”
Related Links:
Stanford University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Urine Test Detects Inherited Neuropathy Missed by Genetic Screening
Sorbitol dehydrogenase (SORD)-related neuropathy is one of the most common inherited nerve disorders, yet diagnosis often lags because current genetic screens frequently miss the causal gene.... Read more
Genomic Test Predicts Risk of SCC Metastasis
Managing squamous cell carcinoma (SCC) of the skin in patients with one or more risk factors is a significant clinical challenge, especially as SCC-related deaths are now estimated to exceed those from melanoma.... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
Chronic obstructive pulmonary disease (COPD) remains a major contributor to global illness, largely driven by cigarette smoking and marked by irreversible lung damage. Acute exacerbations can accelerate... Read more
AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
Myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) is a rare autoimmune disorder in which the immune system attacks the myelin sheath in the central nervous system. Although symptoms... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








